Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

The effect of ethanolic extract of Thymus kotschyanus on cancer cell growth in vitro and depression-like behavior in the mouse.

Doosti MH, Ahmadi K, Fasihi-Ramandi M.

J Tradit Complement Med. 2017 Apr 17;8(1):89-94. doi: 10.1016/j.jtcme.2017.03.003. eCollection 2018 Jan.

2.

Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers.

Long NP, Jung KH, Yoon SJ, Anh NH, Nghi TD, Kang YP, Yan HH, Min JE, Hong SS, Kwon SW.

Oncotarget. 2017 Nov 25;8(65):109436-109456. doi: 10.18632/oncotarget.22689. eCollection 2017 Dec 12.

3.

Optical techniques for cervical neoplasia detection.

Novikova T.

Beilstein J Nanotechnol. 2017 Sep 6;8:1844-1862. doi: 10.3762/bjnano.8.186. eCollection 2017. Review.

4.

Feasibility of clinical detection of cervical dysplasia using angle-resolved low coherence interferometry measurements of depth-resolved nuclear morphology.

Ho D, Drake TK, Smith-McCune KK, Darragh TM, Hwang LY, Wax A.

Int J Cancer. 2017 Mar 15;140(6):1447-1456. doi: 10.1002/ijc.30539.

PMID:
27883177
5.

Quantitative analysis of myocardial tissue with digital autofluorescence microscopy.

Jensen T, Holten-Rossing H, Svendsen IM, Jacobsen C, Vainer B.

J Pathol Inform. 2016 Apr 11;7:15. doi: 10.4103/2153-3539.179908. eCollection 2016.

6.

Imaging hamster model of bile duct cancer in vivo using fluorescent L-glucose derivatives.

Yokoyama H, Sasaki A, Yoshizawa T, Kijima H, Hakamada K, Yamada K.

Hum Cell. 2016 Jul;29(3):111-21. doi: 10.1007/s13577-015-0131-5. Epub 2016 Feb 3.

7.

Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.

Ho D, Drake TK, Bentley RC, Valea FA, Wax A.

Biomed Opt Express. 2015 Jul 7;6(8):2755-65. doi: 10.1364/BOE.6.002755. eCollection 2015 Aug 1.

8.

Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues.

Dobbs JL, Mueller JL, Krishnamurthy S, Shin D, Kuerer H, Yang W, Ramanujam N, Richards-Kortum R.

Breast Cancer Res. 2015 Aug 20;17:105. doi: 10.1186/s13058-015-0617-9.

9.

Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence.

Castellanos MR, Szerszen A, Gundry S, Pirog EC, Maiman M, Rajupet S, Gomez JP, Davidov A, Debata PR, Banerjee P, Fata JE.

Diagn Pathol. 2015 Jul 25;10:119. doi: 10.1186/s13000-015-0343-8.

10.

Optical Imaging: Future Tool in Detection of Pre-cancerous and Cancerous Lesions of Cervix and Its Comparison to Colposcopy.

Pandey K, Bhagoliwal A, Jain S.

J Obstet Gynaecol India. 2015 May;65(3):176-80. doi: 10.1007/s13224-014-0511-x. Epub 2014 Jul 15.

11.

Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.

Gu J, Fu CY, Ng BK, Liu LB, Lim-Tan SK, Lee CG.

PLoS One. 2015 May 12;10(5):e0125706. doi: 10.1371/journal.pone.0125706. eCollection 2015.

12.

The first step toward diagnosing female genital schistosomiasis by computer image analysis.

Holmen SD, Kleppa E, Lillebø K, Pillay P, van Lieshout L, Taylor M, Albregtsen F, Vennervald BJ, Onsrud M, Kjetland EF.

Am J Trop Med Hyg. 2015 Jul;93(1):80-6. doi: 10.4269/ajtmh.15-0071. Epub 2015 Apr 27.

13.

Detection of cervical cancer based on photoacoustic imaging-the in-vitro results.

Peng K, He L, Wang B, Xiao J.

Biomed Opt Express. 2014 Dec 15;6(1):135-43. doi: 10.1364/BOE.6.000135. eCollection 2015 Jan 1.

14.

Real-time absorption reduced surface fluorescence imaging.

Yang B, Tunnell JW.

J Biomed Opt. 2014 Sep;19(9):90505. doi: 10.1117/1.JBO.19.9.090505.

15.

Tissue multifractality and Born approximation in analysis of light scattering: a novel approach for precancers detection.

Das N, Chatterjee S, Kumar S, Pradhan A, Panigrahi P, Vitkin IA, Ghosh N.

Sci Rep. 2014 Aug 20;4:6129. doi: 10.1038/srep06129.

16.

Fluorescein derivatives in intravital fluorescence imaging.

Robertson TA, Bunel F, Roberts MS.

Cells. 2013 Aug 2;2(3):591-606. doi: 10.3390/cells2030591.

17.

Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media.

Joshi B, Barman I, Dingari NC, Cardenas N, Soares JS, Dasari RR, Mohanty S.

Sci Rep. 2013 Oct 2;3:2822. doi: 10.1038/srep02822.

18.

High-resolution optical molecular imaging of changes in choline metabolism in oral neoplasia.

Luo Z, Loja M, Farwell DG, Luu QC, Donald PJ, Amott D, Gandour-Edwards R, Nitin N.

Transl Oncol. 2013 Feb;6(1):33-41. Epub 2013 Feb 1.

19.

High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings.

Quinn MK, Bubi TC, Pierce MC, Kayembe MK, Ramogola-Masire D, Richards-Kortum R.

PLoS One. 2012;7(9):e44924. doi: 10.1371/journal.pone.0044924. Epub 2012 Sep 18.

20.

A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer.

Pierce MC, Guan Y, Quinn MK, Zhang X, Zhang WH, Qiao YL, Castle P, Richards-Kortum R.

Cancer Prev Res (Phila). 2012 Nov;5(11):1273-9. doi: 10.1158/1940-6207.CAPR-12-0221. Epub 2012 Aug 27.

Supplemental Content

Support Center