Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 35

1.

Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI).

Sajjadi AY, Isakoff SJ, Deng B, Singh B, Wanyo CM, Fang Q, Specht MC, Schapira L, Moy B, Bardia A, Boas DA, Carp SA.

Biomed Opt Express. 2017 Jan 4;8(2):555-569. doi: 10.1364/BOE.8.000555. eCollection 2017 Feb 1.

2.

Effects of breast density and compression on normal breast tissue hemodynamics through breast tomosynthesis guided near-infrared spectral tomography.

Michaelsen KE, Krishnaswamy V, Shi L, Vedantham S, Karellas A, Pogue BW, Paulsen KD, Poplack SP.

J Biomed Opt. 2016 Sep 1;21(9):91316. doi: 10.1117/1.JBO.21.9.091316. No abstract available.

PMID:
27677170
3.

Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry.

Ban HY, Schweiger M, Kavuri VC, Cochran JM, Xie L, Busch DR, Katrašnik J, Pathak S, Chung SH, Lee K, Choe R, Czerniecki BJ, Arridge SR, Yodh AG.

Med Phys. 2016 Jul;43(7):4383. doi: 10.1118/1.4953830.

PMID:
27370153
4.

Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo.

Lin CW, Bachilo SM, Vu M, Beckingham KM, Bruce Weisman R.

Nanoscale. 2016 May 21;8(19):10348-57. doi: 10.1039/c6nr01376g. Epub 2016 May 3.

PMID:
27140495
5.

Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.

Vedantham S, Shi L, Michaelsen KE, Krishnaswamy V, Pogue BW, Poplack SP, Karellas A, Paulsen KD.

Biomed Phys Eng Express. 2015;1(4). pii: 045202. Epub 2015 Oct 27.

6.

Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements.

Krishnamurthy N, Kainerstorfer JM, Sassaroli A, Anderson PG, Fantini S.

Rev Sci Instrum. 2016 Feb;87(2):024302. doi: 10.1063/1.4941777.

7.

Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion.

Zimmermann BB, Fang Q, Boas DA, Carp SA.

J Biomed Opt. 2016 Jan;21(1):16010. doi: 10.1117/1.JBO.21.1.016010. No abstract available.

8.

Enhanced resting-state dynamics of the hemoglobin signal as a novel biomarker for detection of breast cancer.

Graber HL, Al abdi R, Xu Y, Asarian AP, Pappas PJ, Dresner L, Patel N, Jagarlamundi K, Solomon WB, Barbour RL.

Med Phys. 2015 Nov;42(11):6406-24. doi: 10.1118/1.4932220.

9.

Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction.

Zhang L, Zhao Y, Jiang S, Pogue BW, Paulsen KD.

Biomed Opt Express. 2015 Aug 27;6(9):3618-30. doi: 10.1364/BOE.6.003618. eCollection 2015 Sep 1.

10.

Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging.

Deng B, Fradkin M, Rouet JM, Moore RH, Kopans DB, Boas DA, Lundqvist M, Fang Q.

J Biomed Opt. 2015 Aug;20(8):80502. doi: 10.1117/1.JBO.20.8.080502.

11.

Diffuse Optics for Tissue Monitoring and Tomography.

Durduran T, Choe R, Baker WB, Yodh AG.

Rep Prog Phys. 2010 Jul;73(7). pii: 076701.

12.
13.

Blood flow reduction in breast tissue due to mammographic compression.

Busch DR, Choe R, Durduran T, Friedman DH, Baker WB, Maidment AD, Rosen MA, Schnall MD, Yodh AG.

Acad Radiol. 2014 Feb;21(2):151-61. doi: 10.1016/j.acra.2013.10.009.

14.

Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system.

Carp SA, Sajjadi AY, Wanyo CM, Fang Q, Specht MC, Schapira L, Moy B, Bardia A, Boas DA, Isakoff SJ.

Biomed Opt Express. 2013 Nov 22;4(12):2911-24. doi: 10.1364/BOE.4.002911. eCollection 2013.

15.

Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics.

Busch DR, Choe R, Durduran T, Yodh AG.

PET Clin. 2013 Jul;8(3). doi: 10.1016/j.cpet.2013.04.004.

16.

Integration of microwave tomography with magnetic resonance for improved breast imaging.

Meaney PM, Golnabi AH, Epstein NR, Geimer SD, Fanning MW, Weaver JB, Paulsen KD.

Med Phys. 2013 Oct;40(10):103101. doi: 10.1118/1.4820361.

17.

Optical tecnology developments in biomedicine: history, current and future.

Nioka S, Chen Y.

Transl Med UniSa. 2011 Oct 17;1:51-150. Print 2011 Sep.

18.

Depth discrimination in diffuse optical transmission imaging by planar scanning off-axis fibers: initial applications to optical mammography.

Kainerstorfer JM, Yu Y, Weliwitigoda G, Anderson PG, Sassaroli A, Fantini S.

PLoS One. 2013;8(3):e58510. doi: 10.1371/journal.pone.0058510. Epub 2013 Mar 14.

19.

Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology.

Zhang W, Wu L, Li J, Yi X, Wang X, Lu Y, Chen W, Zhou Z, Zhang L, Zhao H, Gao F.

Biomed Opt Express. 2013 Feb 1;4(2):331-48. doi: 10.1364/BOE.4.000331. Epub 2013 Jan 25.

20.

Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy.

Choe R, Durduran T.

IEEE J Sel Top Quantum Electron. 2012 Jul;18(4):1367-1386. Epub 2011 Dec 2.

Supplemental Content

Support Center