Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

Comparative Proteomic Studies of Yersinia pestis Strains Isolated from Natural Foci in the Republic of Georgia.

Nozadze M, Zhgenti E, Meparishvili M, Tsverava L, Kiguradze T, Chanturia G, Babuadze G, Kekelidze M, Bakanidze L, Shutkova T, Imnadze P, Francesconi SC, Obiso R, Solomonia R.

Front Public Health. 2015 Oct 16;3:239. doi: 10.3389/fpubh.2015.00239.

2.

Plague: Infections of Companion Animals and Opportunities for Intervention.

Oyston PC, Williamson D.

Animals (Basel). 2011 Jun 21;1(2):242-55. doi: 10.3390/ani1020242. Review.

3.

Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis.

Quintard K, Dewitte A, Reboul A, Madec E, Bontemps-Gallo S, Dondeyne J, Marceau M, Simonet M, Lacroix JM, Sebbane F.

Infect Immun. 2015 Sep;83(9):3638-47. doi: 10.1128/IAI.00482-15.

4.

Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae.

Heroven AK, Dersch P.

Front Cell Infect Microbiol. 2014 Oct 20;4:146. doi: 10.3389/fcimb.2014.00146. Review.

5.

A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

Bozue J, Cote CK, Chance T, Kugelman J, Kern SJ, Kijek TK, Jenkins A, Mou S, Moody K, Fritz D, Robinson CG, Bell T, Worsham P.

PLoS One. 2014 Aug 7;9(8):e104524. doi: 10.1371/journal.pone.0104524.

6.

New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague.

Pradel E, Lemaître N, Merchez M, Ricard I, Reboul A, Dewitte A, Sebbane F.

PLoS Pathog. 2014 Mar 27;10(3):e1004029. doi: 10.1371/journal.ppat.1004029.

7.

Reversible non-stick behaviour of a bacterial protein polymer provides a tuneable molecular mimic for cell and tissue engineering.

Roque AI, Soliakov A, Birch MA, Philips SR, Shah DS, Lakey JH.

Adv Mater. 2014 May;26(17):2704-9, 2616. doi: 10.1002/adma.201304645.

8.

YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas.

Tam C, Demke O, Hermanas T, Mitchell A, Hendrickx AP, Schneewind O.

J Bacteriol. 2014 Mar;196(6):1165-73. doi: 10.1128/JB.01187-13.

9.

Host specificity of bacterial pathogens.

Bäumler A, Fang FC.

Cold Spring Harb Perspect Med. 2013 Dec 1;3(12):a010041. doi: 10.1101/cshperspect.a010041. Review.

10.

Na+/H+ antiport is essential for Yersinia pestis virulence.

Minato Y, Ghosh A, Faulkner WJ, Lind EJ, Schesser Bartra S, Plano GV, Jarrett CO, Hinnebusch BJ, Winogrodzki J, Dibrov P, Häse CC.

Infect Immun. 2013 Sep;81(9):3163-72. doi: 10.1128/IAI.00071-13.

11.

Protecting against plague: towards a next-generation vaccine.

Williamson ED, Oyston PC.

Clin Exp Immunol. 2013 Apr;172(1):1-8. doi: 10.1111/cei.12044. Review.

12.

Post-transcriptional regulation of gene expression in Yersinia species.

Schiano CA, Lathem WW.

Front Cell Infect Microbiol. 2012 Nov 9;2:129. doi: 10.3389/fcimb.2012.00129. Review.

13.

A multi-omic systems approach to elucidating Yersinia virulence mechanisms.

Ansong C, Schrimpe-Rutledge AC, Mitchell HD, Chauhan S, Jones MB, Kim YM, McAteer K, Deatherage Kaiser BL, Dubois JL, Brewer HM, Frank BC, McDermott JE, Metz TO, Peterson SN, Smith RD, Motin VL, Adkins JN.

Mol Biosyst. 2013 Jan 27;9(1):44-54. doi: 10.1039/c2mb25287b.

14.

Yersinia pestis Ail: multiple roles of a single protein.

Kolodziejek AM, Hovde CJ, Minnich SA.

Front Cell Infect Microbiol. 2012 Aug 6;2:103. doi: 10.3389/fcimb.2012.00103. Review.

15.

Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells.

Hatkoff M, Runco LM, Pujol C, Jayatilaka I, Furie MB, Bliska JB, Thanassi DG.

Infect Immun. 2012 Oct;80(10):3490-500. doi: 10.1128/IAI.00434-12.

16.

Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence?

Andrianaivoarimanana V, Telfer S, Rajerison M, Ranjalahy MA, Andriamiarimanana F, Rahaingosoamamitiana C, Rahalison L, Jambou R.

PLoS One. 2012;7(6):e38630. doi: 10.1371/journal.pone.0038630.

17.

Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector.

Cao L, Lim T, Jun S, Thornburg T, Avci R, Yang X.

PLoS One. 2012;7(4):e36283. doi: 10.1371/journal.pone.0036283.

18.

Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function.

Thanassi DG, Bliska JB, Christie PJ.

FEMS Microbiol Rev. 2012 Nov;36(6):1046-82. doi: 10.1111/j.1574-6976.2012.00342.x. Review.

19.

Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli.

Shepard SM, Danzeisen JL, Isaacson RE, Seemann T, Achtman M, Johnson TJ.

J Bacteriol. 2012 Jan;194(2):395-405. doi: 10.1128/JB.06225-11.

20.

Plague in Guinea pigs and its prevention by subunit vaccines.

Quenee LE, Ciletti N, Berube B, Krausz T, Elli D, Hermanas T, Schneewind O.

Am J Pathol. 2011 Apr;178(4):1689-700. doi: 10.1016/j.ajpath.2010.12.028.

Items per page

Supplemental Content

Support Center