Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Effect of Hemodialysis on Eye Coats, Axial Length, and Ocular Perfusion Pressure in Patients with Chronic Renal Failure.

Wang L, Yin G, Yu Z, Chen N, Wang D.

J Ophthalmol. 2018 Feb 8;2018:3105138. doi: 10.1155/2018/3105138. eCollection 2018.

2.

In Vivo Small Molecule Delivery to the Optic Nerve in a Rodent Model.

Tehrani S, Delf RK, Cepurna WO, Davis L, Johnson EC, Morrison JC.

Sci Rep. 2018 Mar 13;8(1):4453. doi: 10.1038/s41598-018-22737-4.

3.

The effect of age on the response of retinal capillary filling to changes in intraocular pressure measured by optical coherence tomography angiography.

Jiang X, Johnson E, Cepurna W, Lozano D, Men S, Wang RK, Morrison J.

Microvasc Res. 2018 Jan;115:12-19. doi: 10.1016/j.mvr.2017.08.001. Epub 2017 Aug 3.

PMID:
28782513
4.

Effect of intravitreal ranibizumab on the ocular circulation of the untreated fellow eye.

Sugimoto M, Nunome T, Sakamoto R, Kobayashi M, Kondo M.

Graefes Arch Clin Exp Ophthalmol. 2017 Aug;255(8):1543-1550. doi: 10.1007/s00417-017-3692-z. Epub 2017 Jun 28.

5.

The connective tissue phenotype of glaucomatous cupping in the monkey eye - Clinical and research implications.

Yang H, Reynaud J, Lockwood H, Williams G, Hardin C, Reyes L, Stowell C, Gardiner SK, Burgoyne CF.

Prog Retin Eye Res. 2017 Jul;59:1-52. doi: 10.1016/j.preteyeres.2017.03.001. Epub 2017 Mar 12. Review.

PMID:
28300644
6.

Compromised Optic Nerve Blood Flow and Autoregulation Secondary to Neural Degeneration.

Cull G, Told R, Burgoyne CF, Thompson S, Fortune B, Wang L.

Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7286-92. doi: 10.1167/iovs.15-17879.

7.

Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT.

Zhi Z, Cepurna W, Johnson E, Jayaram H, Morrison J, Wang RK.

Microvasc Res. 2015 Sep;101:86-95. doi: 10.1016/j.mvr.2015.07.001. Epub 2015 Jul 14.

8.

The non-human primate experimental glaucoma model.

Burgoyne CF.

Exp Eye Res. 2015 Dec;141:57-73. doi: 10.1016/j.exer.2015.06.005. Epub 2015 Jun 9.

9.

Correlation of optic nerve microcirculation with papillomacular bundle structure in treatment naive normal tension glaucoma.

Kobayashi W, Kunikata H, Omodaka K, Togashi K, Ryu M, Akiba M, Takeuchi G, Yuasa T, Nakazawa T.

J Ophthalmol. 2014;2014:468908. doi: 10.1155/2014/468908. Epub 2014 Dec 9.

10.

Comparison of retinal nerve fiber layer thickness in vivo and axonal transport after chronic intraocular pressure elevation in young versus older rats.

Abbott CJ, Choe TE, Burgoyne CF, Cull G, Wang L, Fortune B.

PLoS One. 2014 Dec 11;9(12):e114546. doi: 10.1371/journal.pone.0114546. eCollection 2014.

11.

Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy.

Aizawa N, Kunikata H, Shiga Y, Yokoyama Y, Omodaka K, Nakazawa T.

BMC Ophthalmol. 2014 Sep 24;14:113. doi: 10.1186/1471-2415-14-113.

12.

Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

Wang L, Cull GA, Fortune B.

Curr Eye Res. 2015 Apr;40(4):359-67. doi: 10.3109/02713683.2014.924146. Epub 2014 Jun 9.

13.

Parametric transfer function analysis and modeling of blood flow autoregulation in the optic nerve head.

Yu J, Liang Y, Thompson S, Cull G, Wang L.

Int J Physiol Pathophysiol Pharmacol. 2014 Mar 13;6(1):13-22. eCollection 2014.

14.

Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats.

Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B.

Invest Ophthalmol Vis Sci. 2014 Feb 4;55(2):674-87. doi: 10.1167/iovs.13-12811.

15.

Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma.

Cull G, Burgoyne CF, Fortune B, Wang L.

Invest Ophthalmol Vis Sci. 2013 Jun 21;54(6):4271-7. doi: 10.1167/iovs.13-12013.

16.

Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina.

Bui BV, He Z, Vingrys AJ, Nguyen CT, Wong VH, Fortune B.

J Ophthalmol. 2013;2013:262467. doi: 10.1155/2013/262467. Epub 2013 Jan 29.

17.

Basal blood flow and autoregulation changes in the optic nerve of rhesus monkeys with idiopathic bilateral optic atrophy.

Piper C, Fortune B, Cull G, Cioffi GA, Wang L.

Invest Ophthalmol Vis Sci. 2013 Jan 23;54(1):714-21. doi: 10.1167/iovs.12-9773.

18.

Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method.

Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B.

Invest Ophthalmol Vis Sci. 2012 Dec 17;53(13):8303-9. doi: 10.1167/iovs.12-10911.

19.

Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography.

Zhi Z, Cepurna WO, Johnson EC, Morrison JC, Wang RK.

Biomed Opt Express. 2012 Sep 1;3(9):2220-33. Epub 2012 Aug 24.

20.

Blood pressure modifies retinal susceptibility to intraocular pressure elevation.

He Z, Nguyen CT, Armitage JA, Vingrys AJ, Bui BV.

PLoS One. 2012;7(2):e31104. doi: 10.1371/journal.pone.0031104. Epub 2012 Feb 16.

Supplemental Content

Support Center