Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 9

1.

Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective.

Kricka W, Fitzpatrick J, Bond U.

Front Microbiol. 2014 Apr 22;5:174. doi: 10.3389/fmicb.2014.00174. eCollection 2014. Review.

2.
3.

Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

Young EM, Tong A, Bui H, Spofford C, Alper HS.

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):131-6. doi: 10.1073/pnas.1311970111. Epub 2013 Dec 16.

4.

Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.

Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS.

PLoS One. 2013;8(2):e57048. doi: 10.1371/journal.pone.0057048. Epub 2013 Feb 26.

5.

Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae.

Usher J, Balderas-Hernandez V, Quon P, Gold ND, Martin VJ, Mahadevan R, Baetz K.

G3 (Bethesda). 2011 Sep;1(4):247-58. doi: 10.1534/g3.111.000695. Epub 2011 Sep 1.

6.

Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis.

Klimacek M, Krahulec S, Sauer U, Nidetzky B.

Appl Environ Microbiol. 2010 Nov;76(22):7566-74. doi: 10.1128/AEM.01787-10. Epub 2010 Oct 1.

7.

A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase.

Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG.

J Biol Chem. 2010 Nov 26;285(48):37598-606. doi: 10.1074/jbc.M110.170787. Epub 2010 Sep 23.

8.

Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae.

Garcia Sanchez R, Hahn-H├Ągerdal B, Gorwa-Grauslund MF.

Biotechnol Biofuels. 2010 Sep 1;3:19. doi: 10.1186/1754-6834-3-19.

9.

Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.

Runquist D, Hahn-H├Ągerdal B, Bettiga M.

Microb Cell Fact. 2009 Sep 24;8:49. doi: 10.1186/1475-2859-8-49.

Supplemental Content

Support Center