Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action.

Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A.

Elife. 2016 Dec 12;5. pii: e21422. doi: 10.7554/eLife.21422.

2.

A minimal model for metabolism-dependent chemotaxis in Rhodobacter sphaeroides (†).

Fan S, Endres RG.

Interface Focus. 2014 Dec 6;4(6):20140002. doi: 10.1098/rsfs.2014.0002.

3.

Phosphate sink containing two-component signaling systems as tunable threshold devices.

Amin M, Kothamachu VB, Feliu E, Scharf BE, Porter SL, Soyer OS.

PLoS Comput Biol. 2014 Oct 30;10(10):e1003890. doi: 10.1371/journal.pcbi.1003890. eCollection 2014 Oct.

4.

Conformational barrier of CheY3 and inability of CheY4 to bind FliM control the flagellar motor action in Vibrio cholerae.

Biswas M, Dey S, Khamrui S, Sen U, Dasgupta J.

PLoS One. 2013 Sep 16;8(9):e73923. doi: 10.1371/journal.pone.0073923. eCollection 2013.

5.

Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks.

Amin M, Porter SL, Soyer OS.

PLoS Comput Biol. 2013;9(3):e1002949. doi: 10.1371/journal.pcbi.1002949. Epub 2013 Mar 7.

6.

Evolution of response dynamics underlying bacterial chemotaxis.

Soyer OS, Goldstein RA.

BMC Evol Biol. 2011 Aug 16;11:240. doi: 10.1186/1471-2148-11-240.

7.

CrdS and CrdA comprise a two-component system that is cooperatively regulated by the Che3 chemosensory system in Myxococcus xanthus.

Willett JW, Kirby JR.

MBio. 2011 Aug 2;2(4). pii: e00110-11. doi: 10.1128/mBio.00110-11. Print 2011.

8.

Genome sequence of Rhodobacter sphaeroides Strain WS8N.

Porter SL, Wilkinson DA, Byles ED, Wadhams GH, Taylor S, Saunders NJ, Armitage JP.

J Bacteriol. 2011 Aug;193(15):4027-8. doi: 10.1128/JB.05257-11. Epub 2011 May 27.

9.

XerR, a negative regulator of XccR in Xanthomonas campestris pv. campestris, relieves its repressor function in planta.

Wang L, Zhang L, Geng Y, Xi W, Fang R, Jia Y.

Cell Res. 2011 Jul;21(7):1131-42. doi: 10.1038/cr.2011.64. Epub 2011 Apr 12.

10.

Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase.

Tindall MJ, Porter SL, Maini PK, Armitage JP.

PLoS Comput Biol. 2010 Aug 19;6(8). pii: e1000896. doi: 10.1371/journal.pcbi.1000896.

11.

Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex.

Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP.

PLoS Biol. 2010 Feb 9;8(2):e1000306. doi: 10.1371/journal.pbio.1000306.

12.

Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate.

Pazy Y, Motaleb MA, Guarnieri MT, Charon NW, Zhao R, Silversmith RE.

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1924-9. doi: 10.1073/pnas.0911185107. Epub 2010 Jan 14.

13.

Deciphering chemotaxis pathways using cross species comparisons.

Hamer R, Chen PY, Armitage JP, Reinert G, Deane CM.

BMC Syst Biol. 2010 Jan 11;4:3. doi: 10.1186/1752-0509-4-3.

14.

Upward mobility and alternative lifestyles: a report from the 10th biennial meeting on Bacterial Locomotion and Signal Transduction.

Scharf BE, Aldridge PD, Kirby JR, Crane BR.

Mol Microbiol. 2009 Jul;73(1):5-19. doi: 10.1111/j.1365-2958.2009.06742.x. Epub 2009 Jun 1.

Supplemental Content

Support Center