Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 13

1.

The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.

Shen BW, Lambert A, Walker BC, Stoddard BL, Kaiser BK.

J Mol Biol. 2016 Jan 16;428(1):206-220. doi: 10.1016/j.jmb.2015.12.005. Epub 2015 Dec 15.

2.

Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification.

Molina R, Redondo P, López-Méndez B, Villate M, Merino N, Blanco FJ, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G.

J Biol Chem. 2015 Nov 27;290(48):28727-36. doi: 10.1074/jbc.M115.678342. Epub 2015 Sep 11.

3.

Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold.

Molina R, Marcaida MJ, Redondo P, Marenchino M, Duchateau P, D'Abramo M, Montoya G, Prieto J.

J Biol Chem. 2015 Jul 24;290(30):18534-44. doi: 10.1074/jbc.M115.658666. Epub 2015 Jun 4.

4.

Fast and sensitive detection of indels induced by precise gene targeting.

Yang Z, Steentoft C, Hauge C, Hansen L, Thomsen AL, Niola F, Vester-Christensen MB, Frödin M, Clausen H, Wandall HH, Bennett EP.

Nucleic Acids Res. 2015 May 19;43(9):e59. doi: 10.1093/nar/gkv126. Epub 2015 Mar 9.

5.

Massively parallel determination and modeling of endonuclease substrate specificity.

Thyme SB, Song Y, Brunette TJ, Szeto MD, Kusak L, Bradley P, Baker D.

Nucleic Acids Res. 2014 Dec 16;42(22):13839-52. doi: 10.1093/nar/gku1096. Epub 2014 Nov 11.

6.

Non-specific protein-DNA interactions control I-CreI target binding and cleavage.

Molina R, Redondo P, Stella S, Marenchino M, D'Abramo M, Gervasio FL, Epinat JC, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G.

Nucleic Acids Res. 2012 Aug;40(14):6936-45. doi: 10.1093/nar/gks320. Epub 2012 Apr 11.

7.

Manipulating piggyBac transposon chromosomal integration site selection in human cells.

Kettlun C, Galvan DL, George AL Jr, Kaja A, Wilson MH.

Mol Ther. 2011 Sep;19(9):1636-44. doi: 10.1038/mt.2011.129. Epub 2011 Jul 5.

8.

Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease.

Grizot S, Duclert A, Thomas S, Duchateau P, Pâques F.

Nucleic Acids Res. 2011 Aug;39(14):6124-36. doi: 10.1093/nar/gkr186. Epub 2011 Apr 10.

9.

Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy.

Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F.

Curr Gene Ther. 2011 Feb;11(1):11-27. Review.

10.

Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example.

Alibés A, Nadra AD, De Masi F, Bulyk ML, Serrano L, Stricher F.

Nucleic Acids Res. 2010 Nov;38(21):7422-31. doi: 10.1093/nar/gkq683. Epub 2010 Aug 4.

11.

Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds.

Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Pâques F, Duchateau P.

Nucleic Acids Res. 2010 Apr;38(6):2006-18. doi: 10.1093/nar/gkp1171. Epub 2009 Dec 21.

12.

Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease.

Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Pâques F, Duchateau P.

Nucleic Acids Res. 2009 Sep;37(16):5405-19. doi: 10.1093/nar/gkp548. Epub 2009 Jul 7.

13.

Motif-directed flexible backbone design of functional interactions.

Havranek JJ, Baker D.

Protein Sci. 2009 Jun;18(6):1293-305. doi: 10.1002/pro.142.

Supplemental Content

Support Center