Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

Primary breast lymphoma.

Voria P, Eby PR, Allison K.

Radiol Case Rep. 2015 Nov 6;5(1):351. doi: 10.2484/rcr.v5i1.351.

2.

Human Papilloma Viruses and Breast Cancer.

Lawson JS, Glenn WK, Salyakina D, Delprado W, Clay R, Antonsson A, Heng B, Miyauchi S, Tran DD, Ngan CC, Lutze-Mann L, Whitaker NJ.

Front Oncol. 2015 Dec 16;5:277. doi: 10.3389/fonc.2015.00277.

3.

The Contrasting Role of p16Ink4A Patterns of Expression in Neuroendocrine and Non-Neuroendocrine Lung Tumors: A Comprehensive Analysis with Clinicopathologic and Molecular Correlations.

Fusco N, Guerini-Rocco E, Del Gobbo A, Franco R, Zito-Marino F, Vaira V, Bulfamante G, Ercoli G, Nosotti M, Palleschi A, Bosari S, Ferrero S.

PLoS One. 2015 Dec 16;10(12):e0144923. doi: 10.1371/journal.pone.0144923.

4.

Molecular Heterogeneity of Triple Negative Breast Cancer.

Abramson VG, Mayer IA.

Curr Breast Cancer Rep. 2014 Sep 1;6(3):154-158.

5.

Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences.

Kriegsmann M, Endris V, Wolf T, Pfarr N, Stenzinger A, Loibl S, Denkert C, Schneeweiss A, Budczies J, Sinn P, Weichert W.

Oncotarget. 2014 Oct 30;5(20):9952-65.

6.

Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions.

Witkiewicz AK, Knudsen ES.

Breast Cancer Res. 2014 May 7;16(3):207. doi: 10.1186/bcr3652. Review.

7.

Subtyping of triple-negative breast cancer: implications for therapy.

Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA.

Cancer. 2015 Jan 1;121(1):8-16. doi: 10.1002/cncr.28914. Review.

8.

Downregulation of Smurf2, a tumor-suppressive ubiquitin ligase, in triple-negative breast cancers: involvement of the RB-microRNA axis.

Liu X, Gu X, Sun L, Flowers AB, Rademaker AW, Zhou Y, Kiyokawa H.

BMC Cancer. 2014 Feb 3;14:57. doi: 10.1186/1471-2407-14-57.

9.

Rb suppresses collective invasion, circulation and metastasis of breast cancer cells in CD44-dependent manner.

Kim KJ, Godarova A, Seedle K, Kim MH, Ince TA, Wells SI, Driscoll JJ, Godar S.

PLoS One. 2013 Dec 4;8(12):e80590. doi: 10.1371/journal.pone.0080590.

10.

Biomarkers for Basal-like Breast Cancer.

Choo JR, Nielsen TO.

Cancers (Basel). 2010 May 28;2(2):1040-65. doi: 10.3390/cancers2021040.

11.

RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs.

Robinson TJ, Liu JC, Vizeacoumar F, Sun T, Maclean N, Egan SE, Schimmer AD, Datti A, Zacksenhaus E.

PLoS One. 2013 Nov 12;8(11):e78641. doi: 10.1371/journal.pone.0078641.

12.

The potential role of nanotechnology in therapeutic approaches for triple negative breast cancer.

Johnson R, Sabnis N, McConathy WJ, Lacko AG.

Pharmaceutics. 2013;5(2):353-70. doi: 10.3390/pharmaceutics5020353.

13.

The molecular balancing act of p16(INK4a) in cancer and aging.

LaPak KM, Burd CE.

Mol Cancer Res. 2014 Feb;12(2):167-83. doi: 10.1158/1541-7786.MCR-13-0350. Review.

14.

A subset of malignant phyllodes tumors harbors alterations in the Rb/p16 pathway.

Cimino-Mathews A, Hicks JL, Sharma R, Vang R, Illei PB, De Marzo A, Emens LA, Argani P.

Hum Pathol. 2013 Nov;44(11):2494-500. doi: 10.1016/j.humpath.2013.06.009.

15.

p16 expression correlates with basal-like triple-negative breast carcinoma.

Abou-Bakr AA, Eldweny HI.

Ecancermedicalscience. 2013 May 14;7:317. doi: 10.3332/ecancer.2013.317.

16.

Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines.

Radia AM, Yaser AM, Ma X, Zhang J, Yang C, Dong Q, Rong P, Ye B, Liu S, Wang W.

Int J Mol Sci. 2013 Apr 11;14(4):7959-78. doi: 10.3390/ijms14047959.

17.

αB-crystallin promotes oncogenic transformation and inhibits caspase activation in cells primed for apoptosis by Rb inactivation.

Petrovic V, Malin D, Cryns VL.

Breast Cancer Res Treat. 2013 Apr;138(2):415-25. doi: 10.1007/s10549-013-2465-6.

18.

GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas.

Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, Fetting JH, Park BH, Argani P.

Hum Pathol. 2013 Jul;44(7):1341-9. doi: 10.1016/j.humpath.2012.11.003.

19.

Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas.

Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, Taube JM, Illei PB, Argani P.

Hum Pathol. 2013 Jun;44(6):959-65. doi: 10.1016/j.humpath.2012.09.005.

20.

Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models.

Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Whittle MC, Duncan JS, Johnson SM, Combest AJ, Jin J, Zamboni WC, Johnson GL, Perou CM, Sharpless NE.

Clin Cancer Res. 2012 Oct 1;18(19):5290-303. doi: 10.1158/1078-0432.CCR-12-0563.

Items per page

Supplemental Content

Support Center