Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 255

1.

A systems theoretic approach to analysis and control of mammalian circadian dynamics.

Abel JH, Doyle FJ 3rd.

Chem Eng Res Des. 2016 Dec;116:48-60. doi: 10.1016/j.cherd.2016.09.033. Epub 2016 Oct 8.

PMID:
28496287
2.

CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

Kim H, Zheng Z, Walker PD, Kapatos G, Zhang K.

Mol Cell Biol. 2017 Jun 29;37(14). pii: e00048-17. doi: 10.1128/MCB.00048-17. Print 2017 Jul 15.

PMID:
28461393
3.

Circadian clocks, diets and aging.

Chaudhari A, Gupta R, Makwana K, Kondratov R.

Nutr Healthy Aging. 2017 Mar 31;4(2):101-112. doi: 10.3233/NHA-160006. Review.

4.
5.

Transcriptional regulatory logic of the diurnal cycle in the mouse liver.

Sobel JA, Krier I, Andersin T, Raghav S, Canella D, Gilardi F, Kalantzi AS, Rey G, Weger B, Gachon F, Dal Peraro M, Hernandez N, Schibler U, Deplancke B, Naef F; CycliX consortium.

PLoS Biol. 2017 Apr 17;15(4):e2001069. doi: 10.1371/journal.pbio.2001069. eCollection 2017 Apr.

6.

Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism.

Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F, Venkataraman A, Olarerin-George AO, Francey LJ, Mukherjee S, Girish S, Selby CP, Cal S, Er U, Sianati B, Sengupta A, Anafi RC, Kavakli IH, Sancar A, Baur JA, Dang CV, Hogenesch JB, Weljie AM.

Cell Metab. 2017 Apr 4;25(4):961-974.e4. doi: 10.1016/j.cmet.2017.03.019.

7.

KATP Channels Mediate Differential Metabolic Responses to Glucose Shortage of the Dorsomedial and Ventrolateral Oscillators in the Central Clock.

Yang JJ, Cheng RC, Cheng PC, Wang YC, Huang RC.

Sci Rep. 2017 Apr 4;7(1):640. doi: 10.1038/s41598-017-00699-3.

8.

Mated Drosophila melanogaster females consume more amino acids during the dark phase.

Uchizono S, Tabuki Y, Kawaguchi N, Tanimura T, Itoh TQ.

PLoS One. 2017 Feb 27;12(2):e0172886. doi: 10.1371/journal.pone.0172886. eCollection 2017.

9.

Principles for circadian orchestration of metabolic pathways.

Thurley K, Herbst C, Wesener F, Koller B, Wallach T, Maier B, Kramer A, Westermark PO.

Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1572-1577. doi: 10.1073/pnas.1613103114. Epub 2017 Feb 3.

PMID:
28159888
10.

Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation.

Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R.

Mol Biol Cell. 2017 Mar 15;28(6):834-842. doi: 10.1091/mbc.E16-08-0624. Epub 2017 Jan 18.

11.

Restricted Feeding Schedules Modulate in a Different Manner the Expression of Clock Genes in Rat Hypothalamic Nuclei.

De Araujo LD, Roa SL, Bueno AC, Coeli-Lacchini FB, Martins CS, Uchoa ET, Antunes-Rodrigues J, Elias LL, Elias PC, Moreira AC, De Castro M.

Front Neurosci. 2016 Dec 6;10:567. doi: 10.3389/fnins.2016.00567. eCollection 2016.

12.

The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia.

Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, Vigé X, Bergis OE, Sher R, Kosley R, Kongsamut S, Black MD, Varty GB.

Sci Rep. 2016 Oct 13;6:35320. doi: 10.1038/srep35320.

13.

Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis.

Pan X, Bradfield CA, Hussain MM.

Nat Commun. 2016 Oct 10;7:13011. doi: 10.1038/ncomms13011.

14.

The bear circadian clock doesn't 'sleep' during winter dormancy.

Jansen HT, Leise T, Stenhouse G, Pigeon K, Kasworm W, Teisberg J, Radandt T, Dallmann R, Brown S, Robbins CT.

Front Zool. 2016 Sep 17;13:42. doi: 10.1186/s12983-016-0173-x. eCollection 2016.

15.

Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease.

Verwey M, Dhir S, Amir S.

F1000Res. 2016 Aug 24;5. pii: F1000 Faculty Rev-2062. doi: 10.12688/f1000research.9180.1. eCollection 2016. Review.

16.

The clock gene PER1 plays an important role in regulating the clock gene network in human oral squamous cell carcinoma cells.

Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li Y, Lv XQ.

Oncotarget. 2016 Oct 25;7(43):70290-70302. doi: 10.18632/oncotarget.11844.

17.

Circadian rhythms and metabolism: from the brain to the gut and back again.

Cribbet MR, Logan RW, Edwards MD, Hanlon E, Bien Peek C, Stubblefield JJ, Vasudevan S, Ritchey F, Frank E.

Ann N Y Acad Sci. 2016 Dec;1385(1):21-40. doi: 10.1111/nyas.13188. Epub 2016 Sep 2. Review.

18.

In the darkness of the polar night, scallops keep on a steady rhythm.

Tran D, Sow M, Camus L, Ciret P, Berge J, Massabuau JC.

Sci Rep. 2016 Aug 31;6:32435. doi: 10.1038/srep32435.

19.

Disruption of clock gene expression in human colorectal liver metastases.

Huisman SA, Ahmadi AR, IJzermans JN, Verhoef C, van der Horst GT, de Bruin RW.

Tumour Biol. 2016 Oct;37(10):13973-13981. Epub 2016 Aug 4.

20.

SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding.

Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KK, Titchenell P, Birnbaum MJ, Xu A, Sancar A, Kim JB.

Nat Commun. 2016 Jul 14;7:12180. doi: 10.1038/ncomms12180.

Supplemental Content

Support Center