Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 336

1.

Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia.

Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, Ramos R, Barry MA, Ugarte M, Pérez B, Richard E, Desviat LR.

Sci Rep. 2017 Jul 18;7(1):5727. doi: 10.1038/s41598-017-06420-8.

2.

MicroRNAs and Autophagy: Fine Players in the Control of Chondrocyte Homeostatic Activities in Osteoarthritis.

D'Adamo S, Cetrullo S, Minguzzi M, Silvestri Y, Borzì RM, Flamigni F.

Oxid Med Cell Longev. 2017;2017:3720128. doi: 10.1155/2017/3720128. Epub 2017 Jun 21. Review.

3.

NAD+ augmentation ameliorates acute pancreatitis through regulation of inflammasome signalling.

Shen A, Kim HJ, Oh GS, Lee SB, Lee SH, Pandit A, Khadka D, Choe SK, Kwak SC, Yang SH, Cho EY, Kim HS, Kim H, Park R, Kwak TH, So HS.

Sci Rep. 2017 Jun 7;7(1):3006. doi: 10.1038/s41598-017-03418-0.

4.

Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs.

Lizarbe MA, Calle-Espinosa J, Fernández-Lizarbe E, Fernández-Lizarbe S, Robles MÁ, Olmo N, Turnay J.

Biomed Res Int. 2017;2017:7354260. doi: 10.1155/2017/7354260. Epub 2017 May 10. Review.

5.

Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway.

Zhang Y, Tao X, Yin L, Xu L, Xu Y, Qi Y, Han X, Song S, Zhao Y, Lin Y, Liu K, Peng J.

Br J Pharmacol. 2017 Aug;174(15):2512-2527. doi: 10.1111/bph.13862. Epub 2017 Jul 5.

PMID:
28514495
6.

Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer.

Wang F, Ma Y, Wang H, Qin H.

Oncol Lett. 2017 Mar;13(3):1048-1057. doi: 10.3892/ol.2017.5593. Epub 2017 Jan 11.

7.

Identification of targets of tumor suppressor microRNA-34a using a reporter library system.

Ito Y, Inoue A, Seers T, Hato Y, Igarashi A, Toyama T, Taganov KD, Boldin MP, Asahara H.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3927-3932. doi: 10.1073/pnas.1620019114. Epub 2017 Mar 29.

PMID:
28356515
8.

MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine.

Smith B, Agarwal P, Bhowmick NA.

Endocr Relat Cancer. 2017 May;24(5):R157-R172. doi: 10.1530/ERC-16-0525. Epub 2017 Mar 13. Review.

9.

Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK.

Redox Biol. 2017 Aug;12:340-349. doi: 10.1016/j.redox.2017.03.006. Epub 2017 Mar 7.

10.

p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis.

Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S, Shetty S.

Am J Pathol. 2017 May;187(5):1016-1034. doi: 10.1016/j.ajpath.2016.12.020. Epub 2017 Mar 6.

PMID:
28273432
11.

FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis.

Natarajan SK, Stringham BA, Mohr AM, Wehrkamp CJ, Lu S, Phillippi MA, Harrison-Findik D, Mott JL.

J Lipid Res. 2017 May;58(5):866-875. doi: 10.1194/jlr.M071357. Epub 2017 Mar 1.

12.

Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury.

Rodrigues CE, Capcha JM, de Bragança AC, Sanches TR, Gouveia PQ, de Oliveira PA, Malheiros DM, Volpini RA, Santinho MA, Santana BA, Calado RD, Noronha IL, Andrade L.

Stem Cell Res Ther. 2017 Jan 28;8(1):19. doi: 10.1186/s13287-017-0475-8.

13.

Tumor-associated NADH oxidase (tNOX)-NAD+-sirtuin 1 axis contributes to oxaliplatin-induced apoptosis of gastric cancer cells.

Chen HY, Cheng HL, Lee YH, Yuan TM, Chen SW, Lin YY, Chueh PJ.

Oncotarget. 2017 Feb 28;8(9):15338-15348. doi: 10.18632/oncotarget.14787.

14.

Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer.

Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ.

Int J Mol Sci. 2017 Jan 19;18(1). pii: E197. doi: 10.3390/ijms18010197. Review.

15.

Targeting MicroRNAs in Cancer Gene Therapy.

Ji W, Sun B, Su C.

Genes (Basel). 2017 Jan 9;8(1). pii: E21. doi: 10.3390/genes8010021. Review.

16.

Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets.

Lin J, Chuang CC, Zuo L.

Oncotarget. 2017 Mar 7;8(10):17328-17346. doi: 10.18632/oncotarget.14461. Review.

17.

MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers.

Li C, Zhang K, Chen J, Chen L, Wang R, Chu X.

Oncotarget. 2017 Feb 14;8(7):12433-12450. doi: 10.18632/oncotarget.14015. Review.

18.

MicroRNA-34a promoting apoptosis of human lens epithelial cells through down-regulation of B-cell lymphoma-2 and silent information regulator.

Li QL, Zhang HY, Qin YJ, Meng QL, Yao XL, Guo HK.

Int J Ophthalmol. 2016 Nov 18;9(11):1555-1560. eCollection 2016.

19.

Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma.

Herrero AB, Rojas EA, Misiewicz-Krzeminska I, Krzeminski P, Gutiérrez NC.

Int J Mol Sci. 2016 Nov 30;17(12). pii: E2003. Review.

20.

Are microRNAs true sensors of ageing and cellular senescence?

Williams J, Smith F, Kumar S, Vijayan M, Reddy PH.

Ageing Res Rev. 2017 May;35:350-363. doi: 10.1016/j.arr.2016.11.008. Epub 2016 Nov 27. Review.

PMID:
27903442

Supplemental Content

Support Center