Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Therapeutic Effects of Targeted PPARɣ Activation on Inflamed High-Risk Plaques Assessed by Serial Optical Imaging In Vivo.

Choi JY, Ryu J, Kim HJ, Song JW, Jeon JH, Lee DH, Oh DJ, Gweon DG, Oh WY, Yoo H, Park K, Kim JW.

Theranostics. 2018 Jan 1;8(1):45-60. doi: 10.7150/thno.20885. eCollection 2018.

2.

Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres.

Kolhatkar AG, Chen YT, Chinwangso P, Nekrashevich I, Dannangoda GC, Singh A, Jamison AC, Zenasni O, Rusakova IA, Martirosyan KS, Litvinov D, Xu S, Willson RC, Lee TR.

ACS Omega. 2017 Nov 30;2(11):8010-8019. doi: 10.1021/acsomega.7b01312. Epub 2017 Nov 16.

3.

Ameliorating Amyloid-β Fibrils Triggered Inflammation via Curcumin-Loaded Polymeric Nanoconstructs.

Ameruoso A, Palomba R, Palange AL, Cervadoro A, Lee A, Di Mascolo D, Decuzzi P.

Front Immunol. 2017 Oct 31;8:1411. doi: 10.3389/fimmu.2017.01411. eCollection 2017.

4.

Fluorescence Microscopy Imaging Calibration for Quantifying Nanocarrier Binding to Cells During Shear Flow Exposure.

Ranganathan A, Campo J, Myerson J, Shuvaev V, Zern B, Muzykantov V, Eckmann DM.

J Biomed Nanotechnol. 2017 Jun;13(6):737-745. doi: 10.1166/jbn.2017.2392.

PMID:
29104516
5.

Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions.

Li LL, Qiao SL, Liu WJ, Ma Y, Wan D, Pan J, Wang H.

Nat Commun. 2017 Nov 2;8(1):1276. doi: 10.1038/s41467-017-01296-8.

6.

Properties of acyl modified poly(glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles.

Taresco V, Suksiriworapong J, Creasey R, Burley JC, Mantovani G, Alexander C, Treacher K, Booth J, Garnett MC.

J Polym Sci A Polym Chem. 2016 Oct 15;54(20):3267-3278. doi: 10.1002/pola.28215. Epub 2016 Jul 8.

7.

Shape-dependent cellular toxicity on renal epithelial cells and stone risk of calcium oxalate dihydrate crystals.

Sun XY, Ouyang JM, Yu K.

Sci Rep. 2017 Aug 3;7(1):7250. doi: 10.1038/s41598-017-07598-7.

8.

The role of nanotechnology in the treatment of viral infections.

Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R.

Ther Adv Infect Dis. 2017 Jul;4(4):105-131. doi: 10.1177/2049936117713593. Epub 2017 Jul 5. Review.

9.

Deformable Discoidal Polymeric Nanoconstructs for the Precise Delivery of Therapeutic and Imaging Agents.

Palange AL, Palomba R, Rizzuti IF, Ferreira M, Decuzzi P.

Mol Ther. 2017 Jul 5;25(7):1514-1521. doi: 10.1016/j.ymthe.2017.02.012. Epub 2017 Mar 22. Review.

PMID:
28341562
10.

In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

Ozcelikkale A, Moon HR, Linnes M, Han B.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Sep;9(5). doi: 10.1002/wnan.1460. Epub 2017 Feb 14. Review.

PMID:
28198106
11.

Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions.

Anchordoquy TJ, Barenholz Y, Boraschi D, Chorny M, Decuzzi P, Dobrovolskaia MA, Farhangrazi ZS, Farrell D, Gabizon A, Ghandehari H, Godin B, La-Beck NM, Ljubimova J, Moghimi SM, Pagliaro L, Park JH, Peer D, Ruoslahti E, Serkova NJ, Simberg D.

ACS Nano. 2017 Jan 24;11(1):12-18. doi: 10.1021/acsnano.6b08244. Epub 2017 Jan 9.

PMID:
28068099
12.

Direct Tracking of Particles and Quantification of Margination in Blood Flow.

Carboni EJ, Bognet BH, Bouchillon GM, Kadilak AL, Shor LM, Ward MD, Ma AWK.

Biophys J. 2016 Oct 4;111(7):1487-1495. doi: 10.1016/j.bpj.2016.08.026.

13.

Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes.

Abdelmohsen LK, Williams DS, Pille J, Ozel SG, Rikken RS, Wilson DA, van Hest JC.

J Am Chem Soc. 2016 Aug 3;138(30):9353-6. doi: 10.1021/jacs.6b03984. Epub 2016 Jul 21.

14.

Emergence and Utility of Nonspherical Particles in Biomedicine.

Fish MB, Thompson AJ, Fromen CA, Eniola-Adefeso O.

Ind Eng Chem Res. 2015 Apr 29;54(16):4043-4059. Epub 2015 Jan 26.

15.

Quantitative analysis of nanoparticle transport through in vitro blood-brain barrier models.

Berg C.

Tissue Barriers. 2016 Jan 28;4(1):e1143545. doi: 10.1080/21688370.2016.1143545. eCollection 2016 Jan-Mar. Review.

16.

Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.

Sims LB, Curtis LT, Frieboes HB, Steinbach-Rankins JM.

J Nanobiotechnology. 2016 Apr 22;14:33. doi: 10.1186/s12951-016-0185-x.

17.

Evaluation of uptake and distribution of gold nanoparticles in solid tumors.

England CG, Gobin AM, Frieboes HB.

Eur Phys J Plus. 2015 Nov 1;130(11). pii: 231. Epub 2015 Nov 19.

18.

An injectable nanoparticle generator enhances delivery of cancer therapeutics.

Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H.

Nat Biotechnol. 2016 Apr;34(4):414-8. doi: 10.1038/nbt.3506. Epub 2016 Mar 14.

19.

A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules.

Barros SM, Whitaker SK, Sukthankar P, Avila LA, Gudlur S, Warner M, Beltrão EI, Tomich JM.

Arch Biochem Biophys. 2016 Apr 15;596:22-42. doi: 10.1016/j.abb.2016.02.027. Epub 2016 Feb 27. Review.

20.

Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles.

Li Y, Lian Y, Zhang LT, Aldousari SM, Hedia HS, Asiri SA, Liu WK.

Interface Focus. 2016 Feb 6;6(1):20150086. doi: 10.1098/rsfs.2015.0086.

Supplemental Content

Support Center