Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 433

1.

Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

Moradali MF, Ghods S, Rehm BH.

Front Cell Infect Microbiol. 2017 Feb 15;7:39. doi: 10.3389/fcimb.2017.00039. Review.

2.

Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics.

Ben-Amar A, Daldoul S, Reustle GM, Krczal G, Mliki A.

Curr Genomics. 2016 Dec;17(6):460-475. doi: 10.2174/1389202917666160520102827.

PMID:
28217003
3.

Antiviral Defenses in Plants through Genome Editing.

Romay G, Bragard C.

Front Microbiol. 2017 Jan 23;8:47. doi: 10.3389/fmicb.2017.00047. Review.

4.

Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements.

Zhang Q, Ye Y.

BMC Bioinformatics. 2017 Feb 6;18(1):92. doi: 10.1186/s12859-017-1512-4.

5.

CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.

Kim EJ, Kang KH, Ju JH.

Korean J Intern Med. 2017 Jan;32(1):42-61. doi: 10.3904/kjim.2016.198. Review.

6.

Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.

Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J.

Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009.

PMID:
28041849
7.

Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA.

Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031.

PMID:
28017588
8.

Deciphering, Communicating, and Engineering the CRISPR PAM.

Leenay RT, Beisel CL.

J Mol Biol. 2017 Jan 20;429(2):177-191. doi: 10.1016/j.jmb.2016.11.024. Review.

PMID:
27916599
9.

Application of Genomic Technologies to the Breeding of Trees.

Badenes ML, Fernández I Martí A, Ríos G, Rubio-Cabetas MJ.

Front Genet. 2016 Nov 15;7:198. Review.

10.

Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system.

Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E, Bondy-Denomy J, Bassler BL.

Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):131-135. doi: 10.1073/pnas.1617415113.

PMID:
27849583
11.
12.
13.

Zebrafish Genome Engineering Using the CRISPR-Cas9 System.

Li M, Zhao L, Page-McCaw PS, Chen W.

Trends Genet. 2016 Dec;32(12):815-827. doi: 10.1016/j.tig.2016.10.005. Review.

PMID:
27836208
14.

Exploring the ecological function of CRISPR-Cas virus defense.

Lundgren M.

Commun Integr Biol. 2016 Aug 11;9(5):e1216740.

15.

RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing.

Cantara WA, Hatterschide J, Wu W, Musier-Forsyth K.

RNA. 2017 Feb;23(2):240-249. doi: 10.1261/rna.058404.116.

PMID:
27821510
16.

Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs.

Kang JT, Cho B, Ryu J, Ray C, Lee EJ, Yun YJ, Ahn S, Lee J, Ji DY, Jue N, Clark-Deener S, Lee K, Park KW.

Reprod Biol Endocrinol. 2016 Nov 3;14(1):74.

17.

CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling.

Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, Wu Z, Wu N.

Hum Genet. 2017 Jan;136(1):1-12. doi: 10.1007/s00439-016-1739-6. Review.

18.

Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers are capable of interference and primed adaptation.

Kuznedelov K, Mekler V, Lemak S, Tokmina-Lukaszewska M, Datsenko KA, Jain I, Savitskaya E, Mallon J, Shmakov S, Bothner B, Bailey S, Yakunin AF, Severinov K, Semenova E.

Nucleic Acids Res. 2016 Dec 15;44(22):10849-10861.

19.

Guide RNA engineering for versatile Cas9 functionality.

Nowak CM, Lawson S, Zerez M, Bleris L.

Nucleic Acids Res. 2016 Nov 16;44(20):9555-9564.

20.

Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications.

Shabbir MA, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z.

Front Immunol. 2016 Sep 26;7:375. Review.

Supplemental Content

Support Center