Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

131I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma.

Wang H, Sheng W.

Nanoscale Res Lett. 2017 Dec;12(1):365. doi: 10.1186/s11671-017-2140-7. Epub 2017 May 19.

2.

Intraperitoneal Injection Is Not a Suitable Administration Route for Single-Walled Carbon Nanotubes in Biomedical Applications.

Liu X, Guo Q, Zhang Y, Li J, Li R, Wu Y, Ma P, Yang X.

Dose Response. 2016 Dec 8;14(4):1559325816681320. doi: 10.1177/1559325816681320. eCollection 2016 Oct-Dec.

3.

A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment.

Lee JJ, Saiful Yazan L, Che Abdullah CA.

Int J Nanomedicine. 2017 Mar 27;12:2373-2384. doi: 10.2147/IJN.S127329. eCollection 2017. Review.

4.

Mesoporous carbon nanoshells for high hydrophobic drug loading, multimodal optical imaging, controlled drug release, and synergistic therapy.

Wang H, Wang K, Mu Q, Stephen ZR, Yu Y, Zhou S, Zhang M.

Nanoscale. 2017 Jan 26;9(4):1434-1442. doi: 10.1039/c6nr07894j.

PMID:
28094402
5.

In vitro and in vivo comparison of the immunotoxicity of single- and multi-layered graphene oxides with or without pluronic F-127.

Cho YC, Pak PJ, Joo YH, Lee HS, Chung N.

Sci Rep. 2016 Dec 12;6:38884. doi: 10.1038/srep38884.

6.

Carbon nanotubes as cancer therapeutic carriers and mediators.

Son KH, Hong JH, Lee JW.

Int J Nanomedicine. 2016 Oct 7;11:5163-5185. eCollection 2016. Review.

7.

Synergistic Enhancement of Antitumor Efficacy by PEGylated Multi-walled Carbon Nanotubes Modified with Cell-Penetrating Peptide TAT.

Hu S, Wang T, Pei X, Cai H, Chen J, Zhang X, Wan Q, Wang J.

Nanoscale Res Lett. 2016 Dec;11(1):452. Epub 2016 Oct 10.

8.

Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity.

Assadi A, Najafabadi VS, Shandiz SA, Boroujeni AS, Ashrafi S, Vaziri AZ, Ghoreishi SM, Aghasadeghi MR, Ebrahimi SE, Pirali-Hamedani M, Ardestani MS.

Onco Targets Ther. 2016 Sep 7;9:5531-43. doi: 10.2147/OTT.S103487. eCollection 2016.

9.

Multifunctional Polymer-Coated Carbon Nanotubes for Safe Drug Delivery.

Moore TL, Pitzer JE, Podila R, Wang X, Lewis RL, Grimes SW, Wilson JR, Skjervold E, Brown JM, Rao A, Alexis F.

Part Part Syst Charact. 2013 Apr;30(4):365-373. Epub 2013 Feb 28.

10.

Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.

Neelgund GM, Oki AR.

J Colloid Interface Sci. 2016 Dec 15;484:135-145. doi: 10.1016/j.jcis.2016.07.078. Epub 2016 Jul 29.

PMID:
27599382
11.

Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy.

Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang K, Wang J, Liu Z.

Theranostics. 2016 Jul 18;6(11):1833-43. doi: 10.7150/thno.16047. eCollection 2016.

12.

Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice.

Zhang M, Jasim DA, Ménard-Moyon C, Nunes A, Iijima S, Bianco A, Yudasaka M, Kostarelos K.

Int J Nanomedicine. 2016 Jul 22;11:3317-30. doi: 10.2147/IJN.S103162. eCollection 2016.

13.

Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent.

Fahrenholtz CD, Ding S, Bernish BW, Wright ML, Zheng Y, Yang M, Yao X, Donati GL, Gross MD, Bierbach U, Singh R.

J Inorg Biochem. 2016 Dec;165:170-180. doi: 10.1016/j.jinorgbio.2016.07.016. Epub 2016 Jul 27.

PMID:
27496614
14.

Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

Ghasemvand F, Biazar E, Tavakolifard S, Khaledian M, Rahmanzadeh S, Momenzadeh D, Afroosheh R, Zarkalami F, Shabannezhad M, Hesami Tackallou S, Massoudi N, Heidari Keshel S.

Gastroenterol Hepatol Bed Bench. 2016 Summer;9(3):197-204.

15.
16.

Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation.

Ng CM, Loh HS, Muthoosamy K, Sridewi N, Manickam S.

Int J Nanomedicine. 2016 Apr 18;11:1607-14. doi: 10.2147/IJN.S98726. eCollection 2016.

17.

FeSe2-Decorated Bi2Se3 Nanosheets Fabricated via Cation Exchange for Chelator-Free 64Cu-labeling and Multimodal Image-Guided Photothermal-Radiation Therapy.

Cheng L, Shen S, Shi S, Yi Y, Wang X, Song G, Yang K, Liu G, Barnhart TE, Cai W, Liu Z.

Adv Funct Mater. 2016 Apr 5;26(13):2185-2197. Epub 2016 Feb 8.

18.

Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation.

Shinohara N, Nakazato T, Ohkawa K, Tamura M, Kobayashi N, Morimoto Y, Oyabu T, Myojo T, Shimada M, Yamamoto K, Tao H, Ema M, Naya M, Nakanishi J.

J Appl Toxicol. 2016 Apr;36(4):501-9. doi: 10.1002/jat.3271. Epub 2015 Dec 29.

19.

The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.

Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E.

Nanomedicine (Lond). 2016 Jan;11(1):81-100. doi: 10.2217/nnm.15.188. Epub 2015 Dec 11. Review.

20.

Effect of Competitive Surface Functionalization on Dual-Modality Fluorescence and Magnetic Resonance Imaging of Single-Walled Carbon Nanotubes.

Hong T, Lazarenko RM, Colvin DC, Flores RL, Zhang Q, Xu YQ.

J Phys Chem C Nanomater Interfaces. 2012 Aug 2;116(30):16319-16324. Epub 2012 Jul 3.

Supplemental Content

Support Center