Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability.

Gao F, Zhang J, Fu C, Xie X, Peng F, You J, Tang H, Wang Z, Li P, Chen J.

Int J Nanomedicine. 2017 Jun 1;12:4147-4162. doi: 10.2147/IJN.S134148. eCollection 2017.

2.

Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells.

Gilad Y, Firer M, Gellerman G.

Biomedicines. 2016 May 26;4(2). pii: E11. doi: 10.3390/biomedicines4020011. Review.

3.

Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging.

Fay F, Hansen L, Hectors SJCG, Sanchez-Gaytan BL, Zhao Y, Tang J, Munitz J, Alaarg A, Braza MS, Gianella A, Aaronson SA, Reiner T, Kjems J, Langer R, Hoeben FJM, Janssen HM, Calcagno C, Strijkers GJ, Fayad ZA, PĂ©rez-Medina C, Mulder WJM.

Bioconjug Chem. 2017 May 17;28(5):1413-1421. doi: 10.1021/acs.bioconjchem.7b00086. Epub 2017 May 5.

4.

Optimization of the dorsal skinfold window chamber model and multi-parametric characterization of tumor-associated vasculature.

Maeda A, DaCosta RS.

Intravital. 2014 Feb 4;3(1):e27935. doi: 10.4161/intv.27935. eCollection 2014.

5.

Biological mechanisms of gold nanoparticle radiosensitization.

Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM.

Cancer Nanotechnol. 2017;8(1):2. doi: 10.1186/s12645-017-0026-0. Epub 2017 Feb 2. Review.

6.

CD44v6-Peptide Functionalized Nanoparticles Selectively Bind to Metastatic Cancer Cells.

Li L, Schmitt M, Matzke-Ogi A, Wadhwani P, Orian-Rousseau V, Levkin PA.

Adv Sci (Weinh). 2016 Dec 20;4(1):1600202. doi: 10.1002/advs.201600202. eCollection 2017 Jan.

7.

Alendronate-anchored PEGylation of ceria nanoparticles promotes human hepatoma cell proliferation via AKT/ERK signaling pathways.

Cheng H, Liao ZL, Ning LH, Chen HY, Wei SS, Yang XC, Guo H.

Cancer Med. 2017 Feb;6(2):374-381. doi: 10.1002/cam4.949. Epub 2017 Jan 10.

8.

Cancer nanomedicine: progress, challenges and opportunities.

Shi J, Kantoff PW, Wooster R, Farokhzad OC.

Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108. Epub 2016 Nov 11. Review.

9.

Gold Nanoclusters Doped with (64)Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis.

Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, Meier SL, Luehmann H, Sun G, Rettig M, Dehdashti F, Wooley KL, DiPersio JF, Liu Y.

ACS Nano. 2016 Jun 28;10(6):5959-70. doi: 10.1021/acsnano.6b01326. Epub 2016 May 18.

10.

Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents.

Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH.

Oxid Med Cell Longev. 2016;2016:3685671. doi: 10.1155/2016/3685671. Epub 2016 Feb 23. Review.

11.

Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy.

Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W.

ACS Nano. 2016 Apr 26;10(4):3918-35. doi: 10.1021/acsnano.6b01401. Epub 2016 Apr 8.

12.

Modifying the tumor microenvironment using nanoparticle therapeutics.

Roy A, Li SD.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Nov;8(6):891-908. doi: 10.1002/wnan.1406. Epub 2016 Apr 1. Review.

PMID:
27038329
13.

Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide.

Zhang Q, Lu L, Zhang L, Shi K, Cun X, Yang Y, Liu Y, Gao H, He Q.

Sci Rep. 2016 Feb 4;6:19800. doi: 10.1038/srep19800.

14.

Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy.

Berbeco RI, Detappe A, Tsiamas P, Parsons D, Yewondwossen M, Robar J.

Med Phys. 2016 Jan;43(1):436. doi: 10.1118/1.4938410.

15.

Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization.

Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S.

Int J Radiat Oncol Biol Phys. 2016 Jan 1;94(1):189-205. doi: 10.1016/j.ijrobp.2015.09.032. Epub 2015 Sep 30. Review.

16.

Computational Modeling of Tumor Response to Drug Release from Vasculature-Bound Nanoparticles.

Curtis LT, Wu M, Lowengrub J, Decuzzi P, Frieboes HB.

PLoS One. 2015 Dec 14;10(12):e0144888. doi: 10.1371/journal.pone.0144888. eCollection 2015.

17.

Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition.

Zhang JG, Zhang DD, Wu X, Wang YZ, Gu SY, Zhu GH, Li XY, Li Q, Liu GL.

BMC Cancer. 2015 Oct 28;15:814. doi: 10.1186/s12885-015-1809-5.

18.

A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment.

Zhang CX, Zhao WY, Liu L, Ju RJ, Mu LM, Zhao Y, Zeng F, Xie HJ, Yan Y, Lu WL.

Oncotarget. 2015 Oct 20;6(32):32681-700. doi: 10.18632/oncotarget.5354.

19.

Targeting tumor metastases: Drug delivery mechanisms and technologies.

Ganapathy V, Moghe PV, Roth CM.

J Control Release. 2015 Dec 10;219:215-23. doi: 10.1016/j.jconrel.2015.09.042. Epub 2015 Sep 25. Review.

20.

Principles of nanoparticle design for overcoming biological barriers to drug delivery.

Blanco E, Shen H, Ferrari M.

Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330.

Supplemental Content

Support Center