Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

From integrative genomics to systems genetics in the rat to link genotypes to phenotypes.

Moreno-Moral A, Petretto E.

Dis Model Mech. 2016 Oct 1;9(10):1097-1110. Review.

2.

New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein.

Garcia Diaz AI, Moyon B, Coan PM, Alfazema N, Venda L, Woollard K, Aitman T.

Dis Model Mech. 2016 Apr;9(4):463-71. doi: 10.1242/dmm.024208. Epub 2016 Jan 14.

3.

Dual Linkage of a Locus to Left Ventricular Mass and a Cardiac Gene Co-Expression Network Driven by a Chromosome Domain.

Scott-Boyer MP, Praktiknjo SD, Llamas B, Picard S, Deschepper CF.

Front Cardiovasc Med. 2014 Dec 10;1:11. doi: 10.3389/fcvm.2014.00011. eCollection 2014 Dec 10.

4.

Translational regulation shapes the molecular landscape of complex disease phenotypes.

Schafer S, Adami E, Heinig M, Rodrigues KE, Kreuchwig F, Silhavy J, van Heesch S, Simaite D, Rajewsky N, Cuppen E, Pravenec M, Vingron M, Cook SA, Hubner N.

Nat Commun. 2015 May 26;6:7200. doi: 10.1038/ncomms8200.

5.

Evidence for a link between gut microbiota and hypertension in the Dahl rat.

Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B.

Physiol Genomics. 2015 Jun;47(6):187-97. doi: 10.1152/physiolgenomics.00136.2014. Epub 2015 Mar 31.

6.

ANO1 taking center stage: blood pressure regulation in SHRs.

Li Q, Cai H.

J Mol Cell Cardiol. 2015 May;82:216-7. doi: 10.1016/j.yjmcc.2015.03.013. Epub 2015 Mar 26. No abstract available.

7.

Genetic analysis of the cardiac methylome at single nucleotide resolution in a model of human cardiovascular disease.

Johnson MD, Mueller M, Adamowicz-Brice M, Collins MJ, Gellert P, Maratou K, Srivastava PK, Rotival M, Butt S, Game L, Atanur SS, Silver N, Norsworthy PJ, Langley SR, Petretto E, Pravenec M, Aitman TJ.

PLoS Genet. 2014 Dec 4;10(12):e1004813. doi: 10.1371/journal.pgen.1004813. eCollection 2014 Dec 4.

8.

Natural variation of histone modification and its impact on gene expression in the rat genome.

Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, Colomé-Tatché M, Johannes F, Jansen RC, Neil H, Werner M, Pravenec M, Vingron M, Hubner N.

Genome Res. 2014 Jun;24(6):942-53. doi: 10.1101/gr.169029.113. Epub 2014 May 2.

9.

Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

Xiao X, Moreno-Moral A, Rotival M, Bottolo L, Petretto E.

PLoS Genet. 2014 Jan;10(1):e1004006. doi: 10.1371/journal.pgen.1004006. Epub 2014 Jan 2.

10.

Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.

Langley SR, Bottolo L, Kunes J, Zicha J, Zidek V, Hubner N, Cook SA, Pravenec M, Aitman TJ, Petretto E.

Cardiovasc Res. 2013 Mar 15;97(4):653-65. doi: 10.1093/cvr/cvs329. Epub 2012 Oct 31.

11.

Gene expression suggests spontaneously hypertensive rats may have altered metabolism and reduced hypoxic tolerance.

Ritz MF, Grond-Ginsbach C, Engelter S, Lyrer P.

Curr Neurovasc Res. 2012 Feb;9(1):10-9.

12.

Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.

Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ.

Physiol Genomics. 2011 Nov 7;43(21):1207-18. doi: 10.1152/physiolgenomics.00210.2010. Epub 2011 Aug 16.

13.

The emerging role for rat models in gene discovery.

Dwinell MR, Lazar J, Geurts AM.

Mamm Genome. 2011 Aug;22(7-8):466-75. doi: 10.1007/s00335-011-9346-2. Epub 2011 Jul 6. Review.

14.

High-resolution identity by descent mapping uncovers the genetic basis for blood pressure differences between spontaneously hypertensive rat lines.

Bell R, Herring SM, Gokul N, Monita M, Grove ML, Boerwinkle E, Doris PA.

Circ Cardiovasc Genet. 2011 Jun;4(3):223-31. doi: 10.1161/CIRCGENETICS.110.958934. Epub 2011 Mar 15.

15.

Common variation in the CD36 (fatty acid translocase) gene is associated with left-ventricular mass.

Hall D, Mayosi BM, Rahman TJ, Avery PJ, Watkins HC, Keavney B.

J Hypertens. 2011 Apr;29(4):690-5. doi: 10.1097/HJH.0b013e3283440115.

16.

Defining a rat blood pressure quantitative trait locus to a <81.8 kb congenic segment: comprehensive sequencing and renal transcriptome analysis.

Gopalakrishnan K, Saikumar J, Peters CG, Kumarasamy S, Farms P, Yerga-Woolwine S, Toland EJ, Schnackel W, Giovannucci DR, Joe B.

Physiol Genomics. 2010 Oct;42A(2):153-61. doi: 10.1152/physiolgenomics.00122.2010. Epub 2010 Aug 17.

17.

The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.

Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, Behmoaras J, Fernandez-Suarez XM, Johnson MD, McLaren WM, Patone G, Petretto E, Plessy C, Rockland KS, Rockland C, Saar K, Zhao Y, Carninci P, Flicek P, Kurtz T, Cuppen E, Pravenec M, Hubner N, Jones SJ, Birney E, Aitman TJ.

Genome Res. 2010 Jun;20(6):791-803. doi: 10.1101/gr.103499.109. Epub 2010 Apr 29.

18.

Recent advances in genetics of the spontaneously hypertensive rat.

Pravenec M, Kurtz TW.

Curr Hypertens Rep. 2010 Feb;12(1):5-9. doi: 10.1007/s11906-009-0083-9. Review.

19.

Whole genome survey of copy number variation in the spontaneously hypertensive rat: relationship to quantitative trait loci, gene expression, and blood pressure.

Charchar FJ, Kaiser M, Bingham AJ, Fotinatos N, Ahmady F, Tomaszewski M, Samani NJ.

Hypertension. 2010 May;55(5):1231-8. doi: 10.1161/HYPERTENSIONAHA.109.141663. Epub 2010 Mar 15. Erratum in: Hypertension. 2010 Jun;55(6):e28.

20.

Genetics of hypertension: from experimental animals to humans.

Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF.

Biochim Biophys Acta. 2010 Dec;1802(12):1299-308. doi: 10.1016/j.bbadis.2009.12.006. Epub 2009 Dec 24. Review.

Supplemental Content

Support Center