Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

The Candida albicans TOR-Activating GTPases Gtr1 and Rhb1 Coregulate Starvation Responses and Biofilm Formation.

Flanagan PR, Liu NN, Fitzpatrick DJ, Hokamp K, Köhler JR, Moran GP.

mSphere. 2017 Nov 15;2(6). pii: e00477-17. doi: 10.1128/mSphere.00477-17. eCollection 2017 Nov-Dec.

2.

Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

Jung SI, Rodriguez N, Irrizary J, Liboro K, Bogarin T, Macias M, Eivers E, Porter E, Filler SG, Park H.

PLoS One. 2017 Nov 6;12(11):e0187721. doi: 10.1371/journal.pone.0187721. eCollection 2017.

3.

Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development.

Thammahong A, Puttikamonkul S, Perfect JR, Brennan RG, Cramer RA.

Microbiol Mol Biol Rev. 2017 Mar 15;81(2). pii: e00053-16. doi: 10.1128/MMBR.00053-16. Print 2017 Jun. Review.

PMID:
28298477
4.

Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues.

Xie JL, Grahl N, Sless T, Leach MD, Kim SH, Hogan DA, Robbins N, Cowen LE.

PLoS Genet. 2016 Oct 27;12(10):e1006405. doi: 10.1371/journal.pgen.1006405. eCollection 2016 Oct.

5.

Highly Dynamic and Specific Phosphatidylinositol 4,5-Bisphosphate, Septin, and Cell Wall Integrity Pathway Responses Correlate with Caspofungin Activity against Candida albicans.

Badrane H, Nguyen MH, Clancy CJ.

Antimicrob Agents Chemother. 2016 May 23;60(6):3591-600. doi: 10.1128/AAC.02711-15. Print 2016 Jun.

6.

Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans.

Kim K, Zilbermintz L, Martchenko M.

Ann Clin Microbiol Antimicrob. 2015 Jun 9;14:32. doi: 10.1186/s12941-015-0090-4.

7.

Oxidative stress responses in the human fungal pathogen, Candida albicans.

Dantas Ada S, Day A, Ikeh M, Kos I, Achan B, Quinn J.

Biomolecules. 2015 Feb 25;5(1):142-65. doi: 10.3390/biom5010142. Review.

8.

The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans.

Urrialde V, Prieto D, Pla J, Alonso-Monge R.

Front Microbiol. 2015 Feb 11;6:118. doi: 10.3389/fmicb.2015.00118. eCollection 2015.

9.

Activation and alliance of regulatory pathways in C. albicans during mammalian infection.

Xu W, Solis NV, Ehrlich RL, Woolford CA, Filler SG, Mitchell AP.

PLoS Biol. 2015 Feb 18;13(2):e1002076. doi: 10.1371/journal.pbio.1002076. eCollection 2015 Feb.

10.

Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans.

Sellam A, van het Hoog M, Tebbji F, Beaurepaire C, Whiteway M, Nantel A.

Eukaryot Cell. 2014 May;13(5):675-90. doi: 10.1128/EC.00292-13. Epub 2014 Mar 28.

11.

Genome-wide transcriptional profiling and enrichment mapping reveal divergent and conserved roles of Sko1 in the Candida albicans osmotic stress response.

Marotta DH, Nantel A, Sukala L, Teubl JR, Rauceo JM.

Genomics. 2013 Oct;102(4):363-71. doi: 10.1016/j.ygeno.2013.06.002. Epub 2013 Jun 15.

12.
13.

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.

Su C, Lu Y, Liu H.

Mol Biol Cell. 2013 Feb;24(3):385-97. doi: 10.1091/mbc.E12-06-0477. Epub 2012 Nov 21.

14.

A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans.

Sellam A, Tebbji F, Whiteway M, Nantel A.

PLoS One. 2012;7(8):e43956. doi: 10.1371/journal.pone.0043956. Epub 2012 Aug 29.

15.

Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin.

Badrane H, Nguyen MH, Blankenship JR, Cheng S, Hao B, Mitchell AP, Clancy CJ.

Antimicrob Agents Chemother. 2012 Sep;56(9):4614-24. doi: 10.1128/AAC.00112-12. Epub 2012 Jun 11.

16.

Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

Vandeputte P, Pradervand S, Ischer F, Coste AT, Ferrari S, Harshman K, Sanglard D.

Eukaryot Cell. 2012 Jul;11(7):916-31. doi: 10.1128/EC.00134-12. Epub 2012 May 11.

17.

Portrait of Candida albicans adherence regulators.

Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP.

PLoS Pathog. 2012 Feb;8(2):e1002525. doi: 10.1371/journal.ppat.1002525. Epub 2012 Feb 16.

18.

Mini-blaster-mediated targeted gene disruption and marker complementation in Candida albicans.

Ganguly S, Mitchell AP.

Methods Mol Biol. 2012;845:19-39. doi: 10.1007/978-1-61779-539-8_2.

19.

Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1.

Gregori C, Glaser W, Frohner IE, Reinoso-Martín C, Rupp S, Schüller C, Kuchler K.

Eukaryot Cell. 2011 Dec;10(12):1694-704. doi: 10.1128/EC.05187-11. Epub 2011 Oct 28.

20.

Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3.

Argimón S, Fanning S, Blankenship JR, Mitchell AP.

Eukaryot Cell. 2011 Feb;10(2):272-5. doi: 10.1128/EC.00133-10. Epub 2010 Dec 3.

Supplemental Content

Support Center