Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 17

1.

Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular Nanoplates-Quantum Dots FRET System.

Zeng Q, Li Q, Ji W, Bin X, Song J.

Sci Rep. 2016 May 20;6:26534. doi: 10.1038/srep26534.

2.

Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

Chou KF, Dennis AM.

Sensors (Basel). 2015 Jun 5;15(6):13288-325. doi: 10.3390/s150613288. Review.

3.

FRET-based homogeneous immunoassay on a nanoparticle-based photonic crystal.

Han JH, Sudheendra L, Kennedy IM.

Anal Bioanal Chem. 2015 Jul;407(18):5243-7. doi: 10.1007/s00216-015-8708-0. Epub 2015 May 10.

4.

Nanogel Carrier Design for Targeted Drug Delivery.

Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR.

J Mater Chem B. 2014 Dec 14;2(46):8085-8097.

5.

Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters.

Knoblauch C, Griep M, Friedrich C.

Sensors (Basel). 2014 Oct 22;14(10):19731-66. doi: 10.3390/s141019731.

6.

Protein a detection based on quantum dots-antibody bioprobe using fluorescence coupled capillary electrophoresis.

Qiu L, Bi Y, Wang C, Li J, Guo P, Li J, He W, Wang J, Jiang P.

Int J Mol Sci. 2014 Jan 24;15(2):1804-11. doi: 10.3390/ijms15021804.

7.

Nanomedicine: tiny particles and machines give huge gains.

Tong S, Fine EJ, Lin Y, Cradick TJ, Bao G.

Ann Biomed Eng. 2014 Feb;42(2):243-59. doi: 10.1007/s10439-013-0952-x. Epub 2013 Dec 3. Review.

8.

Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin.

Griep MH, Winder EM, Lueking DR, Garrett GA, Karna SP, Friedrich CR.

Mol Biol Int. 2012;2012:910707. doi: 10.1155/2012/910707. Epub 2012 Jun 10.

9.

Quantum dot-fluorescent protein FRET probes for sensing intracellular pH.

Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G.

ACS Nano. 2012 Apr 24;6(4):2917-24. doi: 10.1021/nn2038077. Epub 2012 Apr 2.

10.

Solid-state nanostructured materials from self-assembly of a globular protein-polymer diblock copolymer.

Thomas CS, Glassman MJ, Olsen BD.

ACS Nano. 2011 Jul 26;5(7):5697-707. doi: 10.1021/nn2013673. Epub 2011 Jun 22.

11.

Quantum dots in cell biology.

Barroso MM.

J Histochem Cytochem. 2011 Mar;59(3):237-51. doi: 10.1369/0022155411398487. Review.

12.

Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture.

Boeneman K, Deschamps JR, Buckhout-White S, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Stewart MH, Susumu K, Goldman ER, Ancona M, Medintz IL.

ACS Nano. 2010 Dec 28;4(12):7253-66. doi: 10.1021/nn1021346. Epub 2010 Nov 17.

13.

Rapid covalent ligation of fluorescent peptides to water solubilized quantum dots.

Blanco-Canosa JB, Medintz IL, Farrell D, Mattoussi H, Dawson PE.

J Am Chem Soc. 2010 Jul 28;132(29):10027-33. doi: 10.1021/ja910988d.

14.

Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly.

Dennis AM, Sotto DC, Mei BC, Medintz IL, Mattoussi H, Bao G.

Bioconjug Chem. 2010 Jul 21;21(7):1160-70. doi: 10.1021/bc900500m.

15.

Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors.

Medintz IL, Pons T, Susumu K, Boeneman K, Dennis A, Farrell D, Deschamps JR, Melinger JS, Bao G, Mattoussi H.

J Phys Chem C Nanomater Interfaces. 2009 Oct 5;113(43):18552-18561.

16.

Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots.

Prasuhn DE, Blanco-Canosa JB, Vora GJ, Delehanty JB, Susumu K, Mei BC, Dawson PE, Medintz IL.

ACS Nano. 2010 Jan 26;4(1):267-78. doi: 10.1021/nn901393v.

17.

Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.

Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL.

J Am Chem Soc. 2009 Mar 25;131(11):3828-9. doi: 10.1021/ja809721j.

Supplemental Content

Support Center