Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2.

Civiero L, Cogo S, Kiekens A, Morganti C, Tessari I, Lobbestael E, Baekelandt V, Taymans JM, Chartier-Harlin MC, Franchin C, Arrigoni G, Lewis PA, Piccoli G, Bubacco L, Cookson MR, Pinton P, Greggio E.

Front Mol Neurosci. 2017 Dec 14;10:417. doi: 10.3389/fnmol.2017.00417. eCollection 2017.

2.

A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.

Deyaert E, Wauters L, Guaitoli G, Konijnenberg A, Leemans M, Terheyden S, Petrovic A, Gallardo R, Nederveen-Schippers LM, Athanasopoulos PS, Pots H, Van Haastert PJM, Sobott F, Gloeckner CJ, Efremov R, Kortholt A, Versées W.

Nat Commun. 2017 Oct 18;8(1):1008. doi: 10.1038/s41467-017-01103-4.

3.

Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes.

Sejwal K, Chami M, Rémigy H, Vancraenenbroeck R, Sibran W, Sütterlin R, Baumgartner P, McLeod R, Chartier-Harlin MC, Baekelandt V, Stahlberg H, Taymans JM.

Sci Rep. 2017 Aug 17;7(1):8667. doi: 10.1038/s41598-017-09126-z.

4.

Parkinson disease-associated LRRK2 G2019S transgene disrupts marrow myelopoiesis and peripheral Th17 response.

Park J, Lee JW, Cooper SC, Broxmeyer HE, Cannon JR, Kim CH.

J Leukoc Biol. 2017 Oct;102(4):1093-1102. doi: 10.1189/jlb.1A0417-147RR. Epub 2017 Jul 27.

PMID:
28751472
5.

The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

Carrion MDP, Marsicano S, Daniele F, Marte A, Pischedda F, Di Cairano E, Piovesana E, von Zweydorf F, Kremmer E, Gloeckner CJ, Onofri F, Perego C, Piccoli G.

Sci Rep. 2017 Jul 14;7(1):5377. doi: 10.1038/s41598-017-05760-9.

6.

Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity.

Nguyen AP, Moore DJ.

Adv Neurobiol. 2017;14:71-88. doi: 10.1007/978-3-319-49969-7_4.

7.

Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation.

Islam MS, Moore DJ.

Biochem Soc Trans. 2017 Feb 8;45(1):163-172. doi: 10.1042/BST20160264. Review.

8.

LRRK2 at the interface of autophagosomes, endosomes and lysosomes.

Roosen DA, Cookson MR.

Mol Neurodegener. 2016 Dec 7;11(1):73. doi: 10.1186/s13024-016-0140-1. Review.

9.

Activation of FADD-Dependent Neuronal Death Pathways as a Predictor of Pathogenicity for LRRK2 Mutations.

Melachroinou K, Leandrou E, Valkimadi PE, Memou A, Hadjigeorgiou G, Stefanis L, Rideout HJ.

PLoS One. 2016 Nov 10;11(11):e0166053. doi: 10.1371/journal.pone.0166053. eCollection 2016.

10.

Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects.

Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin JD, Purnelle A, Krusy N, Maquet P, Lefebvre P, Seutin V, Malgrange B, Nguyen L.

Sci Rep. 2016 Sep 19;6:33377. doi: 10.1038/srep33377.

11.

LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction.

Penney J, Tsurudome K, Liao EH, Kauwe G, Gray L, Yanagiya A, R Calderon M, Sonenberg N, Haghighi AP.

Nat Commun. 2016 Jul 19;7:12188. doi: 10.1038/ncomms12188.

12.

Structure, function, and leucine-rich repeat kinase 2: On the importance of reproducibility in understanding Parkinson's disease.

Cookson MR.

Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8346-8. doi: 10.1073/pnas.1609311113. Epub 2016 Jul 15. No abstract available.

13.

Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts.

Guaitoli G, Raimondi F, Gilsbach BK, Gómez-Llorente Y, Deyaert E, Renzi F, Li X, Schaffner A, Jagtap PK, Boldt K, von Zweydorf F, Gotthardt K, Lorimer DD, Yue Z, Burgin A, Janjic N, Sattler M, Versées W, Ueffing M, Ubarretxena-Belandia I, Kortholt A, Gloeckner CJ.

Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4357-66. doi: 10.1073/pnas.1523708113. Epub 2016 Jun 29.

14.

Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease.

Rosenbusch KE, Kortholt A.

Parkinsons Dis. 2016;2016:7351985. doi: 10.1155/2016/7351985. Epub 2016 May 12. Review.

15.

Selective inhibition of the kinase DYRK1A by targeting its folding process.

Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, Kato-Sumida T, Koike Y, Abe M, Nonaka Y, Ikura T, Ito N, Shibuya H, Hosoya T, Hagiwara M.

Nat Commun. 2016 Apr 22;7:11391. doi: 10.1038/ncomms11391.

16.

Functional and Morphological Correlates in the Drosophila LRRK2 loss-of-function Model of Parkinson's Disease: Drug Effects of Withania somnifera (Dunal) Administration.

De Rose F, Marotta R, Poddighe S, Talani G, Catelani T, Setzu MD, Solla P, Marrosu F, Sanna E, Kasture S, Acquas E, Liscia A.

PLoS One. 2016 Jan 4;11(1):e0146140. doi: 10.1371/journal.pone.0146140. eCollection 2016.

17.

LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand?

Taymans JM, Greggio E.

Curr Neuropharmacol. 2016;14(3):214-25. Review.

18.

LRRK2 autophosphorylation enhances its GTPase activity.

Liu Z, Mobley JA, DeLucas LJ, Kahn RA, West AB.

FASEB J. 2016 Jan;30(1):336-47. doi: 10.1096/fj.15-277095. Epub 2015 Sep 22.

19.

The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway.

Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, Asano T, Yoshimi K, Zhang CL, Matsumoto G, Ohtsuka T, Kageyama R, Kiyonari H, Shioi G, Nukina N, Hattori N, Takahashi R.

PLoS Genet. 2015 Sep 10;11(9):e1005503. doi: 10.1371/journal.pgen.1005503. eCollection 2015 Sep.

20.

Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.

Rudi K, Ho FY, Gilsbach BK, Pots H, Wittinghofer A, Kortholt A, Klare JP.

Biosci Rep. 2015 Aug 26;35(5). pii: e00254. doi: 10.1042/BSR20150128.

Supplemental Content

Support Center