Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Neuropsychological outcomes from deep brain stimulation-stimulation versus micro-lesion.

Pham T, Bronstein JM.

Ann Transl Med. 2017 May;5(10):217. doi: 10.21037/atm.2017.02.16. No abstract available.

2.

Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization.

Iqbal M, Rehan M, Hong KS.

PLoS One. 2017 May 9;12(5):e0176986. doi: 10.1371/journal.pone.0176986. eCollection 2017.

3.

Meta-Analysis of the Relationship between Deep Brain Stimulation in Patients with Parkinson's Disease and Performance in Evaluation Tests for Executive Brain Functions.

Martínez-Martínez AM, Aguilar OM, Acevedo-Triana CA.

Parkinsons Dis. 2017;2017:9641392. doi: 10.1155/2017/9641392. Epub 2017 Feb 8. Review.

4.

The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson's disease monkeys.

Li H, Lei X, Yan T, Li H, Huang B, Li L, Xu L, Liu L, Chen N, Lü L, Ma Y, Xu L, Li J, Wang Z, Zhang B, Hu X.

Sci Rep. 2015 Jul 29;5:12178. doi: 10.1038/srep12178.

5.

Numerical characterization of intraoperative and chronic electrodes in deep brain stimulation.

Paffi A, Camera F, Apollonio F, d'Inzeo G, Liberti M.

Front Comput Neurosci. 2015 Feb 19;9:2. doi: 10.3389/fncom.2015.00002. eCollection 2015.

6.

The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity.

Rae CL, Hughes LE, Anderson MC, Rowe JB.

J Neurosci. 2015 Jan 14;35(2):786-94. doi: 10.1523/JNEUROSCI.3093-13.2015.

7.

Ultra-high field magnetic resonance imaging of the basal ganglia and related structures.

Plantinga BR, Temel Y, Roebroeck A, Uludağ K, Ivanov D, Kuijf ML, Ter Haar Romenij BM.

Front Hum Neurosci. 2014 Nov 5;8:876. doi: 10.3389/fnhum.2014.00876. eCollection 2014.

8.

Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling.

Iqbal M, Rehan M, Khaliq A, Saeed-ur-Rehman, Hong KS.

Comput Math Methods Med. 2014;2014:367173. doi: 10.1155/2014/367173. Epub 2014 Jun 30.

9.

A numerical study to compare stimulations by intraoperative microelectrodes and chronic macroelectrodes in the DBS technique.

Paffi A, Apollonio F, Puxeddu MG, Parazzini M, d'Inzeo G, Ravazzani P, Liberti M.

Biomed Res Int. 2013;2013:262739. doi: 10.1155/2013/262739. Epub 2013 Oct 7.

10.

Modeling and automatic feedback control of tremor: adaptive estimation of deep brain stimulation.

Rehan M, Hong KS.

PLoS One. 2013 Apr 24;8(4):e62888. doi: 10.1371/journal.pone.0062888. Print 2013.

11.

Robust synchronization of delayed chaotic FitzHugh-Nagumo neurons under external electrical stimulation.

Rehan M, Hong KS.

Comput Math Methods Med. 2012;2012:230980. doi: 10.1155/2012/230980. Epub 2012 Nov 1.

12.

Deep brain stimulation of the subthalamic nucleus, but not dopaminergic medication, improves proactive inhibitory control of movement initiation in Parkinson's disease.

Favre E, Ballanger B, Thobois S, Broussolle E, Boulinguez P.

Neurotherapeutics. 2013 Jan;10(1):154-67. doi: 10.1007/s13311-012-0166-1.

13.

Movement disorders and neuromodulation.

Shipton EA.

Neurol Res Int. 2012;2012:309431. doi: 10.1155/2012/309431. Epub 2012 Sep 19.

14.

Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior.

Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, Ibañez-Tallon I, Heintz N, Greengard P.

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11360-5. doi: 10.1073/pnas.1209293109. Epub 2012 Jun 25.

15.

Identification of the cortical neurons that mediate antidepressant responses.

Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N.

Cell. 2012 May 25;149(5):1152-63. doi: 10.1016/j.cell.2012.03.038.

16.

Moving forward: advances in the treatment of movement disorders with deep brain stimulation.

Schiefer TK, Matsumoto JY, Lee KH.

Front Integr Neurosci. 2011 Nov 9;5:69. doi: 10.3389/fnint.2011.00069. eCollection 2011.

17.

Role of α6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders.

Quik M, Perez XA, Grady SR.

Biochem Pharmacol. 2011 Oct 15;82(8):873-82. doi: 10.1016/j.bcp.2011.06.001. Epub 2011 Jun 13. Review.

18.

Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats.

Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M.

Neuropharmacology. 2011 May;60(6):861-8. doi: 10.1016/j.neuropharm.2010.12.032. Epub 2011 Jan 11.

19.

Overcoming status quo bias in the human brain.

Fleming SM, Thomas CL, Dolan RJ.

Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6005-9. doi: 10.1073/pnas.0910380107. Epub 2010 Mar 15.

20.

Objective measurement of dyskinesia in Parkinson's disease using a force plate.

Chung KA, Lobb BM, Nutt JG, McNames J, Horak F.

Mov Disord. 2010 Apr 15;25(5):602-8. doi: 10.1002/mds.22856.

Supplemental Content

Support Center