Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 15

1.

New strategies for targeting matrix metalloproteinases.

Fields GB.

Matrix Biol. 2015 May-Jul;44-46:239-46. doi: 10.1016/j.matbio.2015.01.002. Review.

2.

Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro.

Spicer TP, Jiang J, Taylor AB, Choi JY, Hart PJ, Roush WR, Fields GB, Hodder PS, Minond D.

J Med Chem. 2014 Nov 26;57(22):9598-611. doi: 10.1021/jm501284e.

3.

SKI306X inhibition of glycosaminoglycan degradation in human cartilage involves down-regulation of cytokine-induced catabolic genes.

Choi CH, Kim TH, Sung YK, Choi CB, Na YI, Yoo H, Jun JB.

Korean J Intern Med. 2014 Sep;29(5):647-55. doi: 10.3904/kjim.2014.29.5.647.

4.

Activity of ADAM17 (a disintegrin and metalloprotease 17) is regulated by its noncatalytic domains and secondary structure of its substrates.

Stawikowska R, Cudic M, Giulianotti M, Houghten RA, Fields GB, Minond D.

J Biol Chem. 2013 Aug 2;288(31):22871-9. doi: 10.1074/jbc.M113.462267.

5.

The synthesis and application of Fmoc-Lys(5-Fam) building blocks.

Tokmina-Roszyk M, Tokmina-Roszyk D, Fields GB.

Biopolymers. 2013 Jul;100(4):347-55. doi: 10.1002/bip.22222.

6.

Discovery of novel inhibitors of a disintegrin and metalloprotease 17 (ADAM17) using glycosylated and non-glycosylated substrates.

Minond D, Cudic M, Bionda N, Giulianotti M, Maida L, Houghten RA, Fields GB.

J Biol Chem. 2012 Oct 19;287(43):36473-87. doi: 10.1074/jbc.M112.389114.

7.

The history of matrix metalloproteinases: milestones, myths, and misperceptions.

Iyer RP, Patterson NL, Fields GB, Lindsey ML.

Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H919-30. doi: 10.1152/ajpheart.00577.2012. Review.

8.

Identification of exosite-targeting inhibitors of anthrax lethal factor by high-throughput screening.

Bannwarth L, Goldberg AB, Chen C, Turk BE.

Chem Biol. 2012 Jul 27;19(7):875-82. doi: 10.1016/j.chembiol.2012.05.013.

9.

Identification of novel, exosite-binding matrix metalloproteinase-13 inhibitor scaffolds.

Roth J, Minond D, Darout E, Liu Q, Lauer J, Hodder P, Fields GB, Roush WR.

Bioorg Med Chem Lett. 2011 Dec 1;21(23):7180-4. doi: 10.1016/j.bmcl.2011.09.077.

10.

Peptide from the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) inhibits membrane activation of matrix metalloproteinase-2 (MMP-2).

Xu X, Mikhailova M, Chen Z, Pal S, Robichaud TK, Lafer EM, Baber S, Steffensen B.

Matrix Biol. 2011 Sep;30(7-8):404-12. doi: 10.1016/j.matbio.2011.07.001.

11.

Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain.

Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, Herdewijn P, Opdenakker G.

World J Biol Chem. 2011 Jan 26;2(1):14-24. doi: 10.4331/wjbc.v2.i1.14.

12.

Synthesis and biological applications of collagen-model triple-helical peptides.

Fields GB.

Org Biomol Chem. 2010 Mar 21;8(6):1237-58. doi: 10.1039/b920670a. Review.

13.
14.

Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity.

Lauer-Fields JL, Chalmers MJ, Busby SA, Minond D, Griffin PR, Fields GB.

J Biol Chem. 2009 Sep 4;284(36):24017-24. doi: 10.1074/jbc.M109.016873.

15.

Using fluorogenic peptide substrates to assay matrix metalloproteinases.

Fields GB.

Methods Mol Biol. 2001;151:495-518. No abstract available.

Items per page

Supplemental Content

Support Center