Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 57

1.

Biochemical characterization of functional domains of the chaperone Cosmc.

Hanes MS, Moremen KW, Cummings RD.

PLoS One. 2017 Jun 30;12(6):e0180242. doi: 10.1371/journal.pone.0180242. eCollection 2017.

2.

O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer.

Santos SN, Junqueira MS, Francisco G, Vilanova M, Magalhães A, Dias Baruffi M, Chammas R, Harris AL, Reis CA, Bernardes ES.

Oncotarget. 2016 Dec 13;7(50):83570-83587. doi: 10.18632/oncotarget.13192.

3.

Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma.

Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A.

J Hematol Oncol. 2016 Sep 29;9(1):100. Review.

4.

The cytokine-cosmc signaling axis upregulates the tumor-associated carbohydrate antigen Tn.

Ho CW, Lin CY, Liaw YW, Chiang HL, Chin YT, Huang RL, Lai HC, Hsu YW, Kuo PJ, Chen CE, Lin HY, Whang-Peng J, Nieh S, Fu E, Liu LF, Hwang J.

Oncotarget. 2016 Sep 20;7(38):61930-61944. doi: 10.18632/oncotarget.11324.

5.

Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension.

Peixoto A, Fernandes E, Gaiteiro C, Lima L, Azevedo R, Soares J, Cotton S, Parreira B, Neves M, Amaro T, Tavares A, Teixeira F, Palmeira C, Rangel M, Silva AM, Reis CA, Santos LL, Oliveira MJ, Ferreira JA.

Oncotarget. 2016 Sep 27;7(39):63138-63157. doi: 10.18632/oncotarget.11257.

6.

Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling).

Hanson RL, Hollingsworth MA.

Biomolecules. 2016 Jul 30;6(3). pii: E34. doi: 10.3390/biom6030034. Review.

7.

Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma.

Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH.

Immunity. 2016 Jun 21;44(6):1444-54. doi: 10.1016/j.immuni.2016.05.014.

8.

Loss of intestinal O-glycans promotes spontaneous duodenal tumors.

Gao N, Bergstrom K, Fu J, Xie B, Chen W, Xia L.

Am J Physiol Gastrointest Liver Physiol. 2016 Jul 1;311(1):G74-83. doi: 10.1152/ajpgi.00060.2016. Epub 2016 May 26.

9.

Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses.

Nishat S, Andreana PR.

Vaccines (Basel). 2016 May 20;4(2). pii: E19. doi: 10.3390/vaccines4020019. Review.

10.

The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy.

Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J.

Front Immunol. 2016 Apr 12;7:117. doi: 10.3389/fimmu.2016.00117. eCollection 2016. Review.

11.

Interaction of the Oncofetal Thomsen-Friedenreich Antigen with Galectins in Cancer Progression and Metastasis.

Sindrewicz P, Lian LY, Yu LG.

Front Oncol. 2016 Mar 31;6:79. doi: 10.3389/fonc.2016.00079. eCollection 2016. Review.

12.

Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

Petrosyan A.

Biochem Mol Biol J. 2015;1(1). pii: 16. Epub 2015 Nov 7.

13.

The Role of Sialyl-Tn in Cancer.

Munkley J.

Int J Mol Sci. 2016 Feb 24;17(3):275. doi: 10.3390/ijms17030275. Review.

14.

Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells.

Kudelka MR, Antonopoulos A, Wang Y, Duong DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD, Ju T.

Nat Methods. 2016 Jan;13(1):81-6. doi: 10.1038/nmeth.3675. Epub 2015 Nov 30.

15.

Challenges in Antibody Development against Tn and Sialyl-Tn Antigens.

Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira PA.

Biomolecules. 2015 Aug 11;5(3):1783-809. doi: 10.3390/biom5031783. Review.

16.

MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients.

Lenos K, Goos JA, Vuist IM, den Uil SH, Delis-van Diemen PM, Belt EJ, Stockmann HB, Bril H, de Wit M, Carvalho B, Giblett S, Pritchard CA, Meijer GA, van Kooyk Y, Fijneman RJ, van Vliet SJ.

Oncotarget. 2015 Sep 22;6(28):26278-90. doi: 10.18632/oncotarget.4495.

17.

Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer.

Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR.

Front Oncol. 2015 Jun 25;5:138. doi: 10.3389/fonc.2015.00138. eCollection 2015. Review.

18.

Loss of Core 1-derived O-Glycans Decreases Breast Cancer Development in Mice.

Song K, Herzog BH, Fu J, Sheng M, Bergstrom K, McDaniel JM, Kondo Y, McGee S, Cai X, Li P, Chen H, Xia L.

J Biol Chem. 2015 Aug 14;290(33):20159-66. doi: 10.1074/jbc.M115.654483. Epub 2015 Jun 29.

19.

Promoters of Human Cosmc and T-synthase Genes Are Similar in Structure, Yet Different in Epigenetic Regulation.

Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B, Song L, van Die I, Chapman AB, Cummings RD, Jin P, Ju T.

J Biol Chem. 2015 Jul 31;290(31):19018-33. doi: 10.1074/jbc.M115.654244. Epub 2015 Jun 10.

20.

Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29.

Yu X, Du Z, Sun X, Shi C, Zhang H, Hu T.

Int J Clin Exp Pathol. 2015 Mar 1;8(3):2590-602. eCollection 2015.

Supplemental Content

Support Center