Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts.

Lloren KKS, Lee T, Kwon JJ, Song MS.

Int J Mol Sci. 2017 Dec 13;18(12). pii: E2706. doi: 10.3390/ijms18122706. Review.

2.

Pathobiology of Clade 2.3.4.4 H5Nx High-Pathogenicity Avian Influenza Virus Infections in Minor Gallinaceous Poultry Supports Early Backyard Flock Introductions in the Western United States in 2014-2015.

Bertran K, Lee DH, Pantin-Jackwood MJ, Spackman E, Balzli C, Suarez DL, Swayne DE.

J Virol. 2017 Oct 13;91(21). pii: e00960-17. doi: 10.1128/JVI.00960-17. Print 2017 Nov 1.

3.

A Unique Multibasic Proteolytic Cleavage Site and Three Mutations in the HA2 Domain Confer High Virulence of H7N1 Avian Influenza Virus in Chickens.

Abdelwhab el-SM, Veits J, Tauscher K, Ziller M, Teifke JP, Stech J, Mettenleiter TC.

J Virol. 2015 Oct 21;90(1):400-11. doi: 10.1128/JVI.02082-15. Print 2016 Jan 1.

4.

The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken.

Stech O, Veits J, Abdelwhab el-SM, Wessels U, Mettenleiter TC, Stech J.

Sci Rep. 2015 Aug 26;5:13493. doi: 10.1038/srep13493.

5.

Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site.

Diederich S, Berhane Y, Embury-Hyatt C, Hisanaga T, Handel K, Cottam-Birt C, Ranadheera C, Kobasa D, Pasick J.

J Virol. 2015 Nov;89(21):10724-34. doi: 10.1128/JVI.01238-15. Epub 2015 Aug 5.

6.

Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice.

Qu X, Ding L, Qin Z, Wu J, Pan Z.

PLoS One. 2015 May 4;10(5):e0124422. doi: 10.1371/journal.pone.0124422. eCollection 2015.

7.

Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor.

Monne I, Fusaro A, Nelson MI, Bonfanti L, Mulatti P, Hughes J, Murcia PR, Schivo A, Valastro V, Moreno A, Holmes EC, Cattoli G.

J Virol. 2014 Apr;88(8):4375-88. doi: 10.1128/JVI.03181-13. Epub 2014 Feb 5.

8.

Characteristics of human infection with avian influenza viruses and development of new antiviral agents.

Liu Q, Liu DY, Yang ZQ.

Acta Pharmacol Sin. 2013 Oct;34(10):1257-69. doi: 10.1038/aps.2013.121. Review.

9.

The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks.

Hu J, Hu Z, Mo Y, Wu Q, Cui Z, Duan Z, Huang J, Chen H, Chen Y, Gu M, Wang X, Hu S, Liu H, Liu W, Liu X, Liu X.

J Virol. 2013 Oct;87(20):11063-75. doi: 10.1128/JVI.00760-13. Epub 2013 Aug 7.

10.

Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry.

Abdelwhab el-SM, Veits J, Mettenleiter TC.

Virulence. 2013 Aug 15;4(6):441-52. doi: 10.4161/viru.25710. Epub 2013 Jul 16. Review.

11.

The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks.

Kajihara M, Sakoda Y, Soda K, Minari K, Okamatsu M, Takada A, Kida H.

Virol J. 2013 Feb 2;10:45. doi: 10.1186/1743-422X-10-45.

12.

The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice.

Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D, Liu X.

J Virol. 2013 Mar;87(5):2660-72. doi: 10.1128/JVI.02891-12. Epub 2012 Dec 19.

13.

PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection.

Wang Q, Zhang S, Jiang H, Wang J, Weng L, Mao Y, Sekiguchi S, Yasui F, Kohara M, Buchy P, Deubel V, Xu K, Sun B, Toyoda T.

Virol J. 2012 Jun 8;9:106. doi: 10.1186/1743-422X-9-106.

14.

Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

Noronha JM, Liu M, Squires RB, Pickett BE, Hale BG, Air GM, Galloway SE, Takimoto T, Schmolke M, Hunt V, Klem E, García-Sastre A, McGee M, Scheuermann RH.

J Virol. 2012 May;86(10):5857-66. doi: 10.1128/JVI.06901-11. Epub 2012 Mar 7.

15.

Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks.

Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ, Donis RO, Lowenthal JW.

PLoS One. 2012;7(2):e30960. doi: 10.1371/journal.pone.0030960. Epub 2012 Feb 21.

16.

Highly pathogenic H5N1 avian influenza viruses exhibit few barriers to gene flow in Vietnam.

Carrel M, Wan XF, Nguyen T, Emch M.

Ecohealth. 2012 Mar;9(1):60-9. doi: 10.1007/s10393-012-0749-7. Epub 2012 Feb 14.

17.

Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype.

Veits J, Weber S, Stech O, Breithaupt A, Gräber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2579-84. doi: 10.1073/pnas.1109397109. Epub 2012 Jan 30.

18.
20.

Emergence of avian influenza viruses with enhanced transcription activity by a single amino acid substitution in the nucleoprotein during replication in chicken brains.

Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, Tsukamoto K.

J Virol. 2011 Oct;85(19):10354-63. doi: 10.1128/JVI.00605-11. Epub 2011 Jul 27.

Supplemental Content

Support Center