Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 206

1.

Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins.

Kang H, Oka S, Lee DY, Park J, Aponte AM, Jung YS, Bitterman J, Zhai P, He Y, Kooshapur H, Ghirlando R, Tjandra N, Lee SB, Kim MK, Sadoshima J, Chung JH.

Nat Commun. 2017 May 15;8:15560. doi: 10.1038/ncomms15560.

2.

Chemical and structural biology of protein lysine deacetylases.

Yoshida M, Kudo N, Kosono S, Ito A.

Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(5):297-321. doi: 10.2183/pjab.93.019. Review.

3.

Inflammation Downregulates UCP1 Expression in Brown Adipocytes Potentially via SIRT1 and DBC1 Interaction.

Nøhr MK, Bobba N, Richelsen B, Lund S, Pedersen SB.

Int J Mol Sci. 2017 May 8;18(5). pii: E1006. doi: 10.3390/ijms18051006.

4.

Caught in the act - protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease.

Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T.

J Cell Sci. 2017 Jun 1;130(11):1865-1876. doi: 10.1242/jcs.199463. Epub 2017 May 5. Review.

PMID:
28476937
5.

EGFR mediates activation of RET in lung adenocarcinoma with neuroendocrine differentiation characterized by ASCL1 expression.

Bhinge K, Yang L, Terra S, Nasir A, Muppa P, Aubry MC, Yi J, Janaki N, Kovtun IV, Murphy SJ, Halling G, Rahi H, Mansfield A, de Andrade M, Yang P, Vasmatzis G, Peikert T, Kosari F.

Oncotarget. 2017 Apr 18;8(16):27155-27165. doi: 10.18632/oncotarget.15676.

6.

Identification of a Tissue-Restricted Isoform of SIRT1 Defines a Regulatory Domain that Encodes Specificity.

Deota S, Chattopadhyay T, Ramachandran D, Armstrong E, Camacho B, Maniyadath B, Fulzele A, Gonzalez-de-Peredo A, Denu JM, Kolthur-Seetharam U.

Cell Rep. 2017 Mar 28;18(13):3069-3077. doi: 10.1016/j.celrep.2017.03.012.

7.

A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

Li J, Bonkowski MS, Moniot S, Zhang D, Hubbard BP, Ling AJ, Rajman LA, Qin B, Lou Z, Gorbunova V, Aravind L, Steegborn C, Sinclair DA.

Science. 2017 Mar 24;355(6331):1312-1317. doi: 10.1126/science.aad8242.

PMID:
28336669
8.

Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.

Li X, Gao M, Choi JM, Kim BJ, Zhou MT, Chen Z, Jain AN, Jung SY, Yuan J, Wang W, Wang Y, Chen J.

Mol Cell Proteomics. 2017 Apr;16(4):594-607. doi: 10.1074/mcp.M116.064543. Epub 2017 Feb 7.

PMID:
28174230
9.

The evolution of function within the Nudix homology clan.

Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE.

Proteins. 2017 May;85(5):775-811. doi: 10.1002/prot.25223. Epub 2017 Mar 16.

10.

CHFR negatively regulates SIRT1 activity upon oxidative stress.

Kim M, Kwon YE, Song JO, Bae SJ, Seol JH.

Sci Rep. 2016 Nov 24;6:37578. doi: 10.1038/srep37578.

11.

A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation.

Restelli M, Magni M, Ruscica V, Pinciroli P, De Cecco L, Buscemi G, Delia D, Zannini L.

Cell Death Dis. 2016 Nov 3;7(11):e2453. doi: 10.1038/cddis.2016.359.

12.

CCAR2 Is Required for Proliferation and Tumor Maintenance in Human Squamous Cell Carcinoma.

Best SA, Nwaobasi AN, Schmults CD, Ramsey MR.

J Invest Dermatol. 2017 Feb;137(2):506-512. doi: 10.1016/j.jid.2016.09.027. Epub 2016 Oct 7.

PMID:
27725203
13.

Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family.

Nguyen VN, Park A, Xu A, Srouji JR, Brenner SE, Kirsch JF.

Proteins. 2016 Dec;84(12):1810-1822. doi: 10.1002/prot.25163. Epub 2016 Oct 1.

14.

A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection.

López-Saavedra A, Gómez-Cabello D, Domínguez-Sánchez MS, Mejías-Navarro F, Fernández-Ávila MJ, Dinant C, Martínez-Macías MI, Bartek J, Huertas P.

Nat Commun. 2016 Aug 9;7:12364. doi: 10.1038/ncomms12364.

15.

Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.

Srivastava S.

Clin Transl Med. 2016 Dec;5(1):25. doi: 10.1186/s40169-016-0104-7. Epub 2016 Jul 27. Review.

16.

Breast cancer metastasis suppressor 1 modulates SIRT1-dependent p53 deacetylation through interacting with DBC1.

Liu X, Ehmed E, Li B, Dou J, Qiao X, Jiang W, Yang X, Qiao S, Wu Y.

Am J Cancer Res. 2016 Jun 1;6(6):1441-9. eCollection 2016.

17.

The potential role of epigenetic modulations in BPPV maneuver exercises.

Tsai KL, Wang CT, Kuo CH, Cheng YY, Ma HI, Hung CH, Tsai YJ, Kao CL.

Oncotarget. 2016 Jun 14;7(24):35522-35534. doi: 10.18632/oncotarget.9446.

18.

SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington's Disease Mice.

Tulino R, Benjamin AC, Jolinon N, Smith DL, Chini EN, Carnemolla A, Bates GP.

PLoS One. 2016 Jan 27;11(1):e0145425. doi: 10.1371/journal.pone.0145425. eCollection 2016. Erratum in: PLoS One. 2016;11(2):e0150682.

19.

Potential Modulation of Sirtuins by Oxidative Stress.

Santos L, Escande C, Denicola A.

Oxid Med Cell Longev. 2016;2016:9831825. doi: 10.1155/2016/9831825. Epub 2015 Dec 14. Review.

20.

Cancer-predisposition gene KLLN maintains pericentric H3K9 trimethylation protecting genomic stability.

Nizialek EA, Sankunny M, Niazi F, Eng C.

Nucleic Acids Res. 2016 May 5;44(8):3586-94. doi: 10.1093/nar/gkv1481. Epub 2015 Dec 15.

Supplemental Content

Support Center