Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Unsupervised gene selection using biological knowledge : application in sample clustering.

Acharya S, Saha S, Nikhil N.

BMC Bioinformatics. 2017 Nov 22;18(1):513. doi: 10.1186/s12859-017-1933-0.

2.

Developing a similarity searching module for patient safety event reporting system using semantic similarity measures.

Kang H, Gong Y.

BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):75. doi: 10.1186/s12911-017-0467-8.

3.

A Novel Schema to Enhance Data Quality of Patient Safety Event Reports.

Kang H, Gong Y.

AMIA Annu Symp Proc. 2017 Feb 10;2016:1840-1849. eCollection 2016.

4.

An improved method for functional similarity analysis of genes based on Gene Ontology.

Tian Z, Wang C, Guo M, Liu X, Teng Z.

BMC Syst Biol. 2016 Dec 23;10(Suppl 4):119. doi: 10.1186/s12918-016-0359-z.

5.

Genome-Wide Detection and Analysis of Multifunctional Genes.

Pritykin Y, Ghersi D, Singh M.

PLoS Comput Biol. 2015 Oct 5;11(10):e1004467. doi: 10.1371/journal.pcbi.1004467. eCollection 2015 Oct.

6.

An integrative approach for measuring semantic similarities using gene ontology.

Peng J, Li H, Jiang Q, Wang Y, Chen J.

BMC Syst Biol. 2014;8 Suppl 5:S8. doi: 10.1186/1752-0509-8-S5-S8. Epub 2014 Dec 12.

7.

Categorizer: a tool to categorize genes into user-defined biological groups based on semantic similarity.

Na D, Son H, Gsponer J.

BMC Genomics. 2014 Dec 11;15:1091. doi: 10.1186/1471-2164-15-1091.

8.

FSim: a novel functional similarity search algorithm and tool for discovering functionally related gene products.

Hu Q, Wang Z, Zhang Z.

Biomed Res Int. 2014;2014:509149. doi: 10.1155/2014/509149. Epub 2014 Aug 12.

9.

PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data.

Lavallée-Adam M, Rauniyar N, McClatchy DB, Yates JR 3rd.

J Proteome Res. 2014 Dec 5;13(12):5496-509. doi: 10.1021/pr500473n. Epub 2014 Oct 16.

10.

HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

Wan S, Mak MW, Kung SY.

PLoS One. 2014 Mar 19;9(3):e89545. doi: 10.1371/journal.pone.0089545. eCollection 2014.

11.

A combined approach for genome wide protein function annotation/prediction.

Benso A, Di Carlo S, Ur Rehman H, Politano G, Savino A, Suravajhala P.

Proteome Sci. 2013 Nov 7;11(Suppl 1):S1. doi: 10.1186/1477-5956-11-S1-S1. Epub 2013 Nov 7.

12.

Chapter 15: disease gene prioritization.

Bromberg Y.

PLoS Comput Biol. 2013 Apr;9(4):e1002902. doi: 10.1371/journal.pcbi.1002902. Epub 2013 Apr 25.

13.

Quality of computationally inferred gene ontology annotations.

Skunca N, Altenhoff A, Dessimoz C.

PLoS Comput Biol. 2012 May;8(5):e1002533. doi: 10.1371/journal.pcbi.1002533. Epub 2012 May 31.

14.

Bioinformatics for personal genome interpretation.

Capriotti E, Nehrt NL, Kann MG, Bromberg Y.

Brief Bioinform. 2012 Jul;13(4):495-512. Epub 2012 Jan 13. Review.

15.

Novel search method for the discovery of functional relationships.

Ramírez F, Lawyer G, Albrecht M.

Bioinformatics. 2012 Jan 15;28(2):269-76. doi: 10.1093/bioinformatics/btr631. Epub 2011 Dec 16.

16.

GO-based functional dissimilarity of gene sets.

Díaz-Díaz N, Aguilar-Ruiz JS.

BMC Bioinformatics. 2011 Sep 1;12:360. doi: 10.1186/1471-2105-12-360.

17.

Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet.

Farrés J, Pujol A, Coma M, Ruiz JL, Naval J, Mas JM, Molins A, Fondevila J, Aloy P.

Nutr Metab (Lond). 2010 Dec 9;7:88. doi: 10.1186/1743-7075-7-88.

18.

An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology.

Jain S, Bader GD.

BMC Bioinformatics. 2010 Nov 15;11:562. doi: 10.1186/1471-2105-11-562.

19.

Automatic, context-specific generation of Gene Ontology slims.

Davis MJ, Sehgal MS, Ragan MA.

BMC Bioinformatics. 2010 Oct 7;11:498. doi: 10.1186/1471-2105-11-498.

20.

Finding new genes for non-syndromic hearing loss through an in silico prioritization study.

Accetturo M, Creanza TM, Santoro C, Tria G, Giordano A, Battagliero S, Vaccina A, Scioscia G, Leo P.

PLoS One. 2010 Sep 28;5(9). pii: e12742. doi: 10.1371/journal.pone.0012742.

Supplemental Content

Support Center