Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS.

Ciryam P, Lambert-Smith IA, Bean DM, Freer R, Cid F, Tartaglia GG, Saunders DN, Wilson MR, Oliver SG, Morimoto RI, Dobson CM, Vendruscolo M, Favrin G, Yerbury JJ.

Proc Natl Acad Sci U S A. 2017 May 16;114(20):E3935-E3943. doi: 10.1073/pnas.1613854114. Epub 2017 Apr 10.

2.

Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging.

Gelfand P, Smith RJ, Stavitski E, Borchelt DR, Miller LM.

Anal Chem. 2015 Jun 16;87(12):6025-31. doi: 10.1021/acs.analchem.5b00371. Epub 2015 May 28.

3.

Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity.

Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC.

J Clin Invest. 2014 Aug;124(8):3489-500. doi: 10.1172/JCI71981. Epub 2014 Jul 18.

4.

Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS.

Bourassa MW, Brown HH, Borchelt DR, Vogt S, Miller LM.

Front Aging Neurosci. 2014 Jun 16;6:110. doi: 10.3389/fnagi.2014.00110. eCollection 2014.

5.

Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis.

Foran E, Rosenblum L, Bogush AI, Trotti D.

Neuromolecular Med. 2013 Dec;15(4):760-70. doi: 10.1007/s12017-013-8262-x. Epub 2013 Sep 24. Review.

6.

Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.

Hitchler MJ, Domann FE.

Antioxid Redox Signal. 2014 Apr 1;20(10):1590-8. doi: 10.1089/ars.2013.5385. Epub 2013 Aug 1. Review.

7.

Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy.

Chan PK, Chattopadhyay M, Sharma S, Souda P, Gralla EB, Borchelt DR, Whitelegge JP, Valentine JS.

Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10934-9. doi: 10.1073/pnas.1309613110. Epub 2013 Jun 18.

8.

Impairment of mitochondria in adult mouse brain overexpressing predominantly full-length, N-terminally acetylated human α-synuclein.

Sarafian TA, Ryan CM, Souda P, Masliah E, Kar UK, Vinters HV, Mathern GW, Faull KF, Whitelegge JP, Watson JB.

PLoS One. 2013 May 7;8(5):e63557. doi: 10.1371/journal.pone.0063557. Print 2013.

9.

FTIR spectroscopic imaging of protein aggregation in living cells.

Miller LM, Bourassa MW, Smith RJ.

Biochim Biophys Acta. 2013 Oct;1828(10):2339-46. doi: 10.1016/j.bbamem.2013.01.014. Epub 2013 Jan 25. Review.

10.

Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding.

Shi Y, Mowery RA, Ashley J, Hentz M, Ramirez AJ, Bilgicer B, Slunt-Brown H, Borchelt DR, Shaw BF.

Protein Sci. 2012 Aug;21(8):1197-209. doi: 10.1002/pro.2107.

11.

The complex molecular biology of amyotrophic lateral sclerosis (ALS).

Redler RL, Dokholyan NV.

Prog Mol Biol Transl Sci. 2012;107:215-62. doi: 10.1016/B978-0-12-385883-2.00002-3. Review.

12.

Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis.

Auclair JR, Boggio KJ, Petsko GA, Ringe D, Agar JN.

Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21394-9. doi: 10.1073/pnas.1015463107. Epub 2010 Nov 22.

13.

Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice.

Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB, Miller LM, Borchelt DR, Valentine JS, Whitelegge JP.

J Biol Chem. 2011 Jan 28;286(4):2795-806. doi: 10.1074/jbc.M110.186999. Epub 2010 Nov 10.

14.

DNA-triggered aggregation of copper, zinc superoxide dismutase in the presence of ascorbate.

Yin J, Hu S, Jiang W, Liu L, Lan S, Song X, Liu C.

PLoS One. 2010 Aug 20;5(8):e12328. doi: 10.1371/journal.pone.0012328.

15.

Aggregation modulating elements in mutant human superoxide dismutase 1.

Karch CM, Borchelt DR.

Arch Biochem Biophys. 2010 Nov 15;503(2):175-82. doi: 10.1016/j.abb.2010.07.027. Epub 2010 Aug 2.

16.

Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis.

Chia R, Tattum MH, Jones S, Collinge J, Fisher EM, Jackson GS.

PLoS One. 2010 May 13;5(5):e10627. doi: 10.1371/journal.pone.0010627.

17.

Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis.

Furukawa Y, Kaneko K, Yamanaka K, Nukina N.

J Biol Chem. 2010 Jul 16;285(29):22221-31. doi: 10.1074/jbc.M110.113597. Epub 2010 Apr 19.

18.

SOD1 mutations targeting surface hydrogen bonds promote amyotrophic lateral sclerosis without reducing apo-state stability.

Byström R, Andersen PM, Gröbner G, Oliveberg M.

J Biol Chem. 2010 Jun 18;285(25):19544-52. doi: 10.1074/jbc.M109.086074. Epub 2010 Feb 26.

19.

Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis.

Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, Giordana MT, Strong MJ, Estevez AG, Salmona M, Bendotti C, Bonetto V.

PLoS One. 2009 Dec 2;4(12):e8130. doi: 10.1371/journal.pone.0008130.

20.

Metal-free superoxide dismutase-1 and three different amyotrophic lateral sclerosis variants share a similar partially unfolded beta-barrel at physiological temperature.

Durazo A, Shaw BF, Chattopadhyay M, Faull KF, Nersissian AM, Valentine JS, Whitelegge JP.

J Biol Chem. 2009 Dec 4;284(49):34382-9. doi: 10.1074/jbc.M109.052076. Epub 2009 Oct 5.

Supplemental Content

Support Center