Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 44

1.

Generation and Characterization of α9 and α10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background.

Morley BJ, Dolan DF, Ohlemiller KK, Simmons DD.

Front Neurosci. 2017 Sep 21;11:516. doi: 10.3389/fnins.2017.00516. eCollection 2017.

2.

Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice.

Lykhmus O, Voytenko LP, Lips KS, Bergen I, Krasteva-Christ G, Vetter DE, Kummer W, Skok M.

Front Cell Neurosci. 2017 Sep 12;11:282. doi: 10.3389/fncel.2017.00282. eCollection 2017.

3.

Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10.

Zakrzewicz A, Richter K, Agné A, Wilker S, Siebers K, Fink B, Krasteva-Christ G, Althaus M, Padberg W, Hone AJ, McIntosh JM, Grau V.

Front Cell Neurosci. 2017 Jul 5;11:189. doi: 10.3389/fncel.2017.00189. eCollection 2017.

4.

Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development.

Di Bonito M, Studer M.

Front Neural Circuits. 2017 Apr 19;11:18. doi: 10.3389/fncir.2017.00018. eCollection 2017. Review.

5.

Type II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice.

Maison S, Liberman LD, Liberman MC.

eNeuro. 2016 Aug 17;3(4). pii: ENEURO.0207-16.2016. doi: 10.1523/ENEURO.0207-16.2016. eCollection 2016 Jul-Aug.

6.

Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

Richter K, Mathes V, Fronius M, Althaus M, Hecker A, Krasteva-Christ G, Padberg W, Hone AJ, McIntosh JM, Zakrzewicz A, Grau V.

Sci Rep. 2016 Jun 28;6:28660. doi: 10.1038/srep28660.

7.

Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.

Roux I, Wu JS, McIntosh JM, Glowatzki E.

J Neurophysiol. 2016 Aug 1;116(2):479-92. doi: 10.1152/jn.01038.2015. Epub 2016 Apr 20.

8.

Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing.

Hickman TT, Liberman MC, Jacob MH.

J Neurosci. 2015 Jun 17;35(24):9236-45. doi: 10.1523/JNEUROSCI.4384-14.2015.

9.

Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptor.

Azam L, Papakyriakou A, Zouridakis M, Giastas P, Tzartos SJ, McIntosh JM.

Mol Pharmacol. 2015 May;87(5):855-64. doi: 10.1124/mol.114.096511. Epub 2015 Mar 4. Erratum in: Mol Pharmacol. 2016 Oct;90(4):415-7.

10.

Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics.

Lamas V, Arévalo JC, Juiz JM, Merchán MA.

Front Syst Neurosci. 2015 Jan 20;8:253. doi: 10.3389/fnsys.2014.00253. eCollection 2014.

11.

Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses.

Katz E, Elgoyhen AB.

Front Syst Neurosci. 2014 Dec 2;8:224. doi: 10.3389/fnsys.2014.00224. eCollection 2014. Review.

12.
13.

Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1.

Indurthi DC, Pera E, Kim HL, Chu C, McLeod MD, McIntosh JM, Absalom NL, Chebib M.

Biochem Pharmacol. 2014 May 1;89(1):131-40. doi: 10.1016/j.bcp.2014.02.002. Epub 2014 Feb 15.

14.

Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels.

Scholl ES, Pirone A, Cox DH, Duncan RK, Jacob MH.

Channels (Austin). 2014;8(1):62-75. doi: 10.4161/chan.27470. Epub 2014 Jan 6.

15.

Activation of presynaptic GABA(B(1a,2)) receptors inhibits synaptic transmission at mammalian inhibitory cholinergic olivocochlear-hair cell synapses.

Wedemeyer C, Zorrilla de San Martín J, Ballestero J, Gómez-Casati ME, Torbidoni AV, Fuchs PA, Bettler B, Elgoyhen AB, Katz E.

J Neurosci. 2013 Sep 25;33(39):15477-87. doi: 10.1523/JNEUROSCI.2554-13.2013.

16.

Two distinct channels mediated by m2mAChR and α9nAChR co-exist in type II vestibular hair cells of guinea pig.

Zhou T, Wang Y, Guo CK, Zhang WJ, Yu H, Zhang K, Kong WJ.

Int J Mol Sci. 2013 Apr 24;14(5):8818-31. doi: 10.3390/ijms14058818.

17.

Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

Elliott KL, Houston DW, Fritzsch B.

PLoS One. 2013;8(2):e55541. doi: 10.1371/journal.pone.0055541. Epub 2013 Feb 1.

18.

Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea.

Maison SF, Pyott SJ, Meredith AL, Liberman MC.

J Neurophysiol. 2013 Mar;109(6):1525-34. doi: 10.1152/jn.00924.2012. Epub 2013 Jan 2.

19.

Beyond generalized hair cells: molecular cues for hair cell types.

Jahan I, Pan N, Kersigo J, Fritzsch B.

Hear Res. 2013 Mar;297:30-41. doi: 10.1016/j.heares.2012.11.008. Epub 2012 Nov 27. Review.

20.

The expression of nicotinic receptor alpha7 during cochlear development.

Rogers SW, Myers EJ, Gahring LC.

Brain Behav. 2012 Sep;2(5):628-39. doi: 10.1002/brb3.84. Epub 2012 Aug 23.

Supplemental Content

Support Center