Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 35

1.

Root bark of Ulmus davidiana var. japonica restrains acute alcohol-induced hepatic steatosis onset in mice by inhibiting ROS accumulation.

Pan JH, Lim Y, Kim JH, Heo W, Lee KY, Shin HJ, Kim JK, Lee JH, Kim YJ.

PLoS One. 2017 Nov 27;12(11):e0188381. doi: 10.1371/journal.pone.0188381. eCollection 2017.

2.

Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites.

Fu ZD, Cui JY.

Curr Pharmacol Rep. 2017 Jun;3(3):101-113. doi: 10.1007/s40495-017-0087-0. Epub 2017 Mar 3.

3.

Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice.

Lin CP, Chuang WC, Lu FJ, Chen CY.

World J Gastroenterol. 2017 Jul 21;23(27):4920-4934. doi: 10.3748/wjg.v23.i27.4920.

4.

FoxO1-AMPK-ULK1 Regulates Ethanol-Induced Autophagy in Muscle by Enhanced ATG14 Association with the BECN1-PIK3C3 Complex.

Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH.

Alcohol Clin Exp Res. 2017 May;41(5):895-910. doi: 10.1111/acer.13377. Epub 2017 Apr 5.

5.

Key Events Participating in the Pathogenesis of  Alcoholic Liver Disease.

Magdaleno F, Blajszczak CC, Nieto N.

Biomolecules. 2017 Jan 27;7(1). pii: E9. doi: 10.3390/biom7010009. Review.

6.

Liver-specific Gene Inactivation of the Transcription Factor ATF4 Alleviates Alcoholic Liver Steatosis in Mice.

Li K, Xiao Y, Yu J, Xia T, Liu B, Guo Y, Deng J, Chen S, Wang C, Guo F.

J Biol Chem. 2016 Aug 26;291(35):18536-46. doi: 10.1074/jbc.M116.726836. Epub 2016 Jul 12.

7.

Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice.

Shearn CT, Fritz KS, Shearn AH, Saba LM, Mercer KE, Engi B, Galligan JJ, Zimniak P, Orlicky DJ, Ronis MJ, Petersen DR.

Redox Biol. 2016 Apr;7:68-77. doi: 10.1016/j.redox.2015.11.013. Epub 2015 Nov 27.

8.

Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency.

Sun Q, Zhong W, Zhang W, Zhou Z.

Am J Physiol Gastrointest Liver Physiol. 2016 Feb 1;310(3):G205-14. doi: 10.1152/ajpgi.00270.2015. Epub 2015 Nov 19.

9.

Increased hepatocellular protein carbonylation in human end-stage alcoholic cirrhosis.

Shearn CT, Orlicky DJ, Saba LM, Shearn AH, Petersen DR.

Free Radic Biol Med. 2015 Dec;89:1144-53. doi: 10.1016/j.freeradbiomed.2015.10.420. Epub 2015 Oct 27.

10.

Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice.

Qiu P, Li X, Kong DS, Li HZ, Niu CC, Pan SH.

Evid Based Complement Alternat Med. 2015;2015:613584. doi: 10.1155/2015/613584. Epub 2015 May 25.

11.

Liver steatosis in hepatitis C patients.

González-Reimers E, Quintero-Platt G, Rodríguez-Gaspar M, Alemán-Valls R, Pérez-Hernández O, Santolaria-Fernández F.

World J Hepatol. 2015 Jun 8;7(10):1337-46. doi: 10.4254/wjh.v7.i10.1337. Review.

12.

Pathogenesis of alcoholic liver disease: role of oxidative metabolism.

Ceni E, Mello T, Galli A.

World J Gastroenterol. 2014 Dec 21;20(47):17756-72. doi: 10.3748/wjg.v20.i47.17756. Review.

13.

Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver.

Liu J.

World J Gastroenterol. 2014 Oct 28;20(40):14672-85. doi: 10.3748/wjg.v20.i40.14672. Review.

14.

Chronic alcohol ingestion in rats alters lung metabolism, promotes lipid accumulation, and impairs alveolar macrophage functions.

Romero F, Shah D, Duong M, Stafstrom W, Hoek JB, Kallen CB, Lang CH, Summer R.

Am J Respir Cell Mol Biol. 2014 Dec;51(6):840-9. doi: 10.1165/rcmb.2014-0127OC.

15.

Steatosis and steatohepatitis: complex disorders.

Bettermann K, Hohensee T, Haybaeck J.

Int J Mol Sci. 2014 Jun 3;15(6):9924-44. doi: 10.3390/ijms15069924. Review.

16.

Pharmacological ceramide reduction alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice.

Correnti JM, Juskeviciute E, Swarup A, Hoek JB.

Am J Physiol Gastrointest Liver Physiol. 2014 Jun 1;306(11):G959-73. doi: 10.1152/ajpgi.00395.2013. Epub 2014 Apr 17.

17.

Identification of 5' AMP-activated kinase as a target of reactive aldehydes during chronic ingestion of high concentrations of ethanol.

Shearn CT, Backos DS, Orlicky DJ, Smathers-McCullough RL, Petersen DR.

J Biol Chem. 2014 May 30;289(22):15449-62. doi: 10.1074/jbc.M113.543942. Epub 2014 Apr 10.

18.

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo.

Hasenour CM, Ridley DE, Hughey CC, James FD, Donahue EP, Shearer J, Viollet B, Foretz M, Wasserman DH.

J Biol Chem. 2014 Feb 28;289(9):5950-9. doi: 10.1074/jbc.M113.528232. Epub 2014 Jan 8.

19.

Zidovudine (AZT) and hepatic lipid accumulation: implication of inflammation, oxidative and endoplasmic reticulum stress mediators.

Banerjee A, Abdelmegeed MA, Jang S, Song BJ.

PLoS One. 2013 Oct 11;8(10):e76850. doi: 10.1371/journal.pone.0076850. eCollection 2013.

20.

Increased dietary fat contributes to dysregulation of the LKB1/AMPK pathway and increased damage in a mouse model of early-stage ethanol-mediated steatosis.

Shearn CT, Smathers RL, Jiang H, Orlicky DJ, Maclean KN, Petersen DR.

J Nutr Biochem. 2013 Aug;24(8):1436-45. doi: 10.1016/j.jnutbio.2012.12.002. Epub 2013 Mar 1.

Supplemental Content

Support Center