Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 32

1.

Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

Shiojiri K, Ozawa R, Yamashita KI, Uefune M, Matsui K, Tsukamoto C, Tokumaru S, Takabayashi J.

Sci Rep. 2017 Jan 30;7:41508. doi: 10.1038/srep41508.

2.

Expression Patterns of Three UGT Genes in Different Chemotype Safflower Lines and under MeJA Stimulus Revealed Their Potential Role in Flavonoid Biosynthesis.

Guo DD, Liu F, Tu YH, He BX, Gao Y, Guo ML.

PLoS One. 2016 Jul 8;11(7):e0158159. doi: 10.1371/journal.pone.0158159.

3.

Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula-A Focus on Responses to Fusarium Wilt Disease.

Thatcher LF, Gao LL, Singh KB.

Plants (Basel). 2016 Feb 5;5(1). pii: E11. doi: 10.3390/plants5010011.

4.

Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.

Li P, Dong Q, Ge S, He X, Verdier J, Li D, Zhao J.

Plant Biotechnol J. 2016 Jul;14(7):1604-18. doi: 10.1111/pbi.12524. Epub 2016 Jan 24.

5.

Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics.

Kumar Y, Zhang L, Panigrahi P, Dholakia BB, Dewangan V, Chavan SG, Kunjir SM, Wu X, Li N, Rajmohanan PR, Kadoo NY, Giri AP, Tang H, Gupta VS.

Plant Biotechnol J. 2016 Jul;14(7):1589-603. doi: 10.1111/pbi.12522. Epub 2016 Jan 23.

6.

Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease.

Ding X, Yang M, Huang H, Chuan Y, He X, Li C, Zhu Y, Zhu S.

Front Plant Sci. 2015 Oct 12;6:830. doi: 10.3389/fpls.2015.00830.

7.

Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies.

Ogo Y, Mori T, Nakabayashi R, Saito K, Takaiwa F.

J Exp Bot. 2016 Jan;67(1):95-106. doi: 10.1093/jxb/erv429.

8.

Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, Li W, Tang Y, Sumner LW.

Plant Physiol. 2015 Apr;167(4):1699-716. doi: 10.1104/pp.114.253054.

9.

Extreme specificity of NCR gene expression in Medicago truncatula.

Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M, Udvardi MK, Kondorosi E, Mergaert P, Alunni B.

BMC Genomics. 2014 Aug 25;15:712. doi: 10.1186/1471-2164-15-712.

11.

Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus.

Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez MD, Gómez-Gómez L.

Plant Physiol. 2012 Aug;159(4):1335-54. doi: 10.1104/pp.112.198069.

12.

Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.

Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P.

Plant Physiol. 2012 Jun;159(2):531-47. doi: 10.1104/pp.112.194753.

13.

Recent advances of metabolomics in plant biotechnology.

Okazaki Y, Saito K.

Plant Biotechnol Rep. 2012 Jan;6(1):1-15.

14.

LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula.

Staszków A, Swarcewicz B, Banasiak J, Muth D, Jasiński M, Stobiecki M.

Metabolomics. 2011 Dec;7(4):604-613.

15.

PlaNet: combined sequence and expression comparisons across plant networks derived from seven species.

Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR, Usadel B, Nikoloski Z, Persson S.

Plant Cell. 2011 Mar;23(3):895-910. doi: 10.1105/tpc.111.083667.

16.

Transcription reprogramming during root nodule development in Medicago truncatula.

Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P.

PLoS One. 2011 Jan 27;6(1):e16463. doi: 10.1371/journal.pone.0016463.

17.

Recent advances in plant metabolomics and greener pastures.

Sumner LW.

F1000 Biol Rep. 2010 Jan 27;2. pii: 7. doi: 10.3410/B2-7.

18.

Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?

Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc'h N, St-Pierre B, Burlat V.

BMC Plant Biol. 2010 Aug 19;10:182. doi: 10.1186/1471-2229-10-182.

19.

Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds.

Gutierrez-Gonzalez JJ, Wu X, Gillman JD, Lee JD, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen HT, Sleper DA.

BMC Plant Biol. 2010 Jun 11;10:105. doi: 10.1186/1471-2229-10-105.

20.

Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula.

Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, Sumner LW, Dixon RA.

Plant Cell. 2010 Mar;22(3):850-66. doi: 10.1105/tpc.109.073270.

Supplemental Content

Support Center