Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 13

1.

Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague.

Arnaboldi PM, Sambir M, D'Arco C, Peters LA, Seegers JF, Mayer L, McCormick AA, Dattwyler RJ.

Vaccine. 2016 Nov 11;34(47):5768-5776. doi: 10.1016/j.vaccine.2016.09.063. Epub 2016 Oct 13.

PMID:
27745954
2.

Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis.

Hammamieh R, Muhie S, Borschel R, Gautam A, Miller SA, Chakraborty N, Jett M.

PLoS One. 2016 Mar 22;11(3):e0151788. doi: 10.1371/journal.pone.0151788. eCollection 2016. Erratum in: PLoS One. 2016;11(4):e0154006.

3.

Plague vaccines: current developments and future perspectives.

Feodorova VA, Motin VL.

Emerg Microbes Infect. 2012 Nov;1(11):e36. doi: 10.1038/emi.2012.34. Epub 2012 Nov 7. Review.

4.

Selective Protective Potency of Yersinia pestis ΔnlpD Mutants.

Dentovskaya SV, Ivanov SA, Kopylov PKh, Shaikhutdinova RZ, Platonov ME, Kombarova TI, Gapel'chenkova TV, Balakhonov SV, Anisimov AP.

Acta Naturae. 2015 Jan-Mar;7(1):102-8.

5.

High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection.

Ponnusamy D, Fitts EC, Sha J, Erova TE, Kozlova EV, Kirtley ML, Tiner BL, Andersson JA, Chopra AK.

Infect Immun. 2015 May;83(5):2065-81. doi: 10.1128/IAI.02913-14. Epub 2015 Mar 9.

6.

A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms.

Phanse Y, Carrillo-Conde BR, Ramer-Tait AE, Broderick S, Kong CS, Rajan K, Flick R, Mandell RB, Narasimhan B, Wannemuehler MJ.

Sci Rep. 2014 Jan 20;4:3775. doi: 10.1038/srep03775.

7.

The role of immune correlates and surrogate markers in the development of vaccines and immunotherapies for plague.

Williamson ED.

Adv Prev Med. 2012;2012:365980. doi: 10.1155/2012/365980. Epub 2011 Sep 29.

8.

Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

Wang S, Goguen JD, Li F, Lu S.

Vaccine. 2011 Sep 9;29(39):6802-9. doi: 10.1016/j.vaccine.2010.12.062. Epub 2011 Jan 1.

9.

Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant.

Galindo CL, Moen ST, Kozlova EV, Sha J, Garner HR, Agar SL, Chopra AK.

Comp Funct Genomics. 2009;2009:914762. doi: 10.1155/2009/914762. Epub 2010 Jan 20.

10.

High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay.

Li B, Zhou L, Guo J, Wang X, Ni B, Ke Y, Zhu Z, Guo Z, Yang R.

Infect Immun. 2009 Oct;77(10):4356-61. doi: 10.1128/IAI.00242-09. Epub 2009 Aug 3.

11.

SAR studies for a new class of antibacterial NAD biosynthesis inhibitors.

Moro WB, Yang Z, Kane TA, Zhou Q, Harville S, Brouillette CG, Brouillette WJ.

J Comb Chem. 2009 Jul-Aug;11(4):617-25. doi: 10.1021/cc9000357.

12.

Virtual screening to identify lead inhibitors for bacterial NAD synthetase (NADs).

Moro WB, Yang Z, Kane TA, Brouillette CG, Brouillette WJ.

Bioorg Med Chem Lett. 2009 Apr 1;19(7):2001-5. doi: 10.1016/j.bmcl.2009.02.034. Epub 2009 Feb 12.

13.

Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis.

Kirimanjeswara GS, Olmos S, Bakshi CS, Metzger DW.

Immunol Rev. 2008 Oct;225:244-55. doi: 10.1111/j.1600-065X.2008.00689.x. Review.

Supplemental Content

Support Center