Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 58

1.

Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae.

Knudsen JD, Johanson T, Eliasson Lantz A, Carlquist M.

Biotechnol Rep (Amst). 2015 Jun 15;7:107-119. doi: 10.1016/j.btre.2015.06.001. eCollection 2015 Sep.

2.

Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering.

Wang C, Zhao J, Qiu C, Wang S, Shen Y, Du B, Ding Y, Bao X.

Biomed Res Int. 2017;2017:5318232. doi: 10.1155/2017/5318232. Epub 2017 Mar 26.

3.

Comparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiae.

Li X, Park A, Estrela R, Kim SR, Jin YS, Cate JH.

Biotechnol Rep (Amst). 2016 Jan 22;9:53-56. doi: 10.1016/j.btre.2016.01.003. eCollection 2016 Mar.

4.

Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.

Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JH.

PLoS One. 2016 Jun 23;11(6):e0158111. doi: 10.1371/journal.pone.0158111. eCollection 2016.

5.

Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.

Kim HS, Oh YH, Jang YA, Kang KH, David Y, Yu JH, Song BK, Choi JI, Chang YK, Joo JC, Park SJ.

Microb Cell Fact. 2016 Jun 3;15:95. doi: 10.1186/s12934-016-0495-6.

6.

EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.

Stovicek V, Borja GM, Forster J, Borodina I.

J Ind Microbiol Biotechnol. 2015 Nov;42(11):1519-31. doi: 10.1007/s10295-015-1684-8. Epub 2015 Sep 16.

7.

Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production.

Li P, Sun H, Chen Z, Li Y, Zhu T.

Microb Cell Fact. 2015 Feb 21;14:22. doi: 10.1186/s12934-015-0206-8.

8.

Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP + -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana.

Zheng Y, Yu X, Li T, Xiong X, Chen S.

Biotechnol Biofuels. 2014 Oct 3;7(1):125. doi: 10.1186/s13068-014-0125-7. eCollection 2014.

10.

Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields.

Lee SM, Jellison T, Alper HS.

Biotechnol Biofuels. 2014 Aug 20;7(1):122. doi: 10.1186/s13068-014-0122-x. eCollection 2014.

11.

L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene.

Koivuranta KT, Ilmén M, Wiebe MG, Ruohonen L, Suominen P, Penttilä M.

Microb Cell Fact. 2014 Aug 8;13:107. doi: 10.1186/s12934-014-0107-2.

12.
13.

Functional characterization of a xylose transporter in Aspergillus nidulans.

Colabardini AC, Ries LN, Brown NA, Dos Reis TF, Savoldi M, Goldman MH, Menino JF, Rodrigues F, Goldman GH.

Biotechnol Biofuels. 2014 Apr 1;7(1):46. doi: 10.1186/1754-6834-7-46.

14.

Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae.

Klimacek M, Kirl E, Krahulec S, Longus K, Novy V, Nidetzky B.

Microb Cell Fact. 2014 Mar 8;13(1):37. doi: 10.1186/1475-2859-13-37.

15.

Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

Weyda I, Lübeck M, Ahring BK, Lübeck PS.

J Ind Microbiol Biotechnol. 2014 Apr;41(4):733-9. doi: 10.1007/s10295-014-1415-6. Epub 2014 Feb 26.

16.

Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.

Hou J, Suo F, Wang C, Li X, Shen Y, Bao X.

BMC Biotechnol. 2014 Feb 14;14:13. doi: 10.1186/1472-6750-14-13.

17.

Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

Shi J, Zhang M, Zhang L, Wang P, Jiang L, Deng H.

Microb Biotechnol. 2014 Mar;7(2):90-9. doi: 10.1111/1751-7915.12092. Epub 2014 Jan 7.

18.

Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae.

Harcus D, Dignard D, Lépine G, Askew C, Raymond M, Whiteway M, Wu C.

PLoS One. 2013 Nov 13;8(11):e80733. doi: 10.1371/journal.pone.0080733. eCollection 2013.

19.

Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.

Sato TK, Liu T, Parreiras LS, Williams DL, Wohlbach DJ, Bice BD, Ong IM, Breuer RJ, Qin L, Busalacchi D, Deshpande S, Daum C, Gasch AP, Hodge DB.

Appl Environ Microbiol. 2014 Jan;80(2):540-54. doi: 10.1128/AEM.01885-13. Epub 2013 Nov 8.

20.

Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae.

Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X.

Biomed Res Int. 2013;2013:461204. doi: 10.1155/2013/461204. Epub 2013 Sep 30.

Supplemental Content

Support Center