Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping.

Earl C, Bagnéris C, Zeman K, Cole A, Barrett T, Savva R.

Nucleic Acids Res. 2018 May 4;46(8):4286-4300. doi: 10.1093/nar/gky217.

2.

Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex.

Chakraborty S, Steinbach PJ, Paul D, Mu H, Broyde S, Min JH, Ansari A.

Nucleic Acids Res. 2018 Feb 16;46(3):1240-1255. doi: 10.1093/nar/gkx1216.

3.

Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

Velmurugu Y, Vivas P, Connolly M, Kuznetsov SV, Rice PA, Ansari A.

Nucleic Acids Res. 2018 Feb 28;46(4):1741-1755. doi: 10.1093/nar/gkx1215.

4.

Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis.

Weiser BP, Stivers JT, Cole PA.

Biophys J. 2017 Jul 25;113(2):393-401. doi: 10.1016/j.bpj.2017.06.016.

PMID:
28746850
5.

Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase.

Rangaswamy S, Pandey A, Mitra S, Hegde ML.

Genes (Basel). 2017 Jun 30;8(7). pii: E175. doi: 10.3390/genes8070175.

6.

Both DNA global deformation and repair enzyme contacts mediate flipping of thymine dimer damage.

Knips A, Zacharias M.

Sci Rep. 2017 Jan 27;7:41324. doi: 10.1038/srep41324.

7.

Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases.

Schormann N, Zhukovskaya N, Bedwell G, Nuth M, Gillilan R, Prevelige PE, Ricciardi RP, Banerjee S, Chattopadhyay D.

Protein Sci. 2016 Dec;25(12):2113-2131. doi: 10.1002/pro.3058. Epub 2016 Nov 2. Review.

8.

Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.

Cravens SL, Stivers JT.

Biochemistry. 2016 Sep 20;55(37):5230-42. doi: 10.1021/acs.biochem.6b00482. Epub 2016 Sep 7.

9.

The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction.

Wu Y, Zhou X, Barnes CO, DeLucia M, Cohen AE, Gronenborn AM, Ahn J, Calero G.

Nat Struct Mol Biol. 2016 Oct;23(10):933-940. doi: 10.1038/nsmb.3284. Epub 2016 Aug 29.

10.

Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG.

Hashimoto H.

Biophysics (Nagoya-shi). 2014 Oct 18;10:63-8. doi: 10.2142/biophysics.10.63. eCollection 2014. Review.

11.

Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex.

Velmurugu Y, Chen X, Slogoff Sevilla P, Min JH, Ansari A.

Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2296-305. doi: 10.1073/pnas.1514666113. Epub 2016 Mar 31.

12.

A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase.

Li H, Endutkin AV, Bergonzo C, Campbell AJ, de los Santos C, Grollman A, Zharkov DO, Simmerling C.

Nucleic Acids Res. 2016 Jan 29;44(2):683-94. doi: 10.1093/nar/gkv1092. Epub 2015 Nov 8.

13.

Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA.

Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F.

J Biol Chem. 2015 Jul 17;290(29):17923-34. doi: 10.1074/jbc.M115.648352. Epub 2015 Jun 4.

14.

Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase.

Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D.

BMC Struct Biol. 2015 Jun 2;15:10. doi: 10.1186/s12900-015-0037-1.

15.

Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III.

Kuznetsov NA, Kladova OA, Kuznetsova AA, Ishchenko AA, Saparbaev MK, Zharkov DO, Fedorova OS.

J Biol Chem. 2015 Jun 5;290(23):14338-49. doi: 10.1074/jbc.M114.621128. Epub 2015 Apr 13.

16.

Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.

Cravens SL, Schonhoft JD, Rowland MM, Rodriguez AA, Anderson BG, Stivers JT.

Nucleic Acids Res. 2015 Apr 30;43(8):4087-97. doi: 10.1093/nar/gkv301. Epub 2015 Apr 6.

17.

Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.

Buechner CN, Maiti A, Drohat AC, Tessmer I.

Nucleic Acids Res. 2015 Mar 11;43(5):2716-29. doi: 10.1093/nar/gkv139. Epub 2015 Feb 24.

18.

Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

Szulik MW, Pallan PS, Nocek B, Voehler M, Banerjee S, Brooks S, Joachimiak A, Egli M, Eichman BF, Stone MP.

Biochemistry. 2015 Feb 10;54(5):1294-305. doi: 10.1021/bi501534x. Epub 2015 Jan 29. Erratum in: Biochemistry. 2015 Apr 21;54(15):2550.

19.

Kinetic gating mechanism of DNA damage recognition by Rad4/XPC.

Chen X, Velmurugu Y, Zheng G, Park B, Shim Y, Kim Y, Liu L, Van Houten B, He C, Ansari A, Min JH.

Nat Commun. 2015 Jan 6;6:5849. doi: 10.1038/ncomms6849.

20.

Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.

Kuznetsov NA, Bergonzo C, Campbell AJ, Li H, Mechetin GV, de los Santos C, Grollman AP, Fedorova OS, Zharkov DO, Simmerling C.

Nucleic Acids Res. 2015 Jan;43(1):272-81. doi: 10.1093/nar/gku1300. Epub 2014 Dec 17.

Supplemental Content

Support Center