Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

Baghaie A, Yu Z, D'Souza RM.

Med Image Anal. 2017 Apr;37:129-145. doi: 10.1016/j.media.2017.02.002. Epub 2017 Feb 4.

PMID:
28208100
2.

Application of Independent Component Analysis Techniques in Speckle Noise Reduction of Retinal OCT Images.

Baghaie A, D'Souza RM, Yu Z.

Optik (Stuttg). 2016 Aug;127(15):5783-5791.

PMID:
27667860
3.

Segmentation Based Sparse Reconstruction of Optical Coherence Tomography Images.

Fang L, Li S, Cunefare D, Farsiu S.

IEEE Trans Med Imaging. 2017 Feb;36(2):407-421. doi: 10.1109/TMI.2016.2611503. Epub 2016 Sep 20.

PMID:
27662673
4.

Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

Xia S, Huang Y, Peng S, Wu Y, Tan X.

Biomed Opt Express. 2016 Jul 5;7(8):2912-26. doi: 10.1364/BOE.7.002912. eCollection 2016 Aug 1.

5.

State-of-the-art in retinal optical coherence tomography image analysis.

Baghaie A, Yu Z, D'Souza RM.

Quant Imaging Med Surg. 2015 Aug;5(4):603-17. doi: 10.3978/j.issn.2223-4292.2015.07.02. Review.

6.

Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images.

Chen Q, de Sisternes L, Leng T, Rubin DL.

J Digit Imaging. 2015 Jun;28(3):346-61. doi: 10.1007/s10278-014-9742-8.

7.

Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage.

Somfai GM, Tátrai E, Laurik L, Varga BE, Ölvedy V, Smiddy WE, Tchitnga R, Somogyi A, DeBuc DC.

BMC Bioinformatics. 2014 Sep 1;15:295. doi: 10.1186/1471-2105-15-295.

8.

Speckle reduction in optical coherence tomography images based on wave atoms.

Du Y, Liu G, Feng G, Chen Z.

J Biomed Opt. 2014 May;19(5):056009. doi: 10.1117/1.JBO.19.5.056009.

9.

Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain.

Rabbani H, Sonka M, Abramoff MD.

Int J Biomed Imaging. 2013;2013:417491. doi: 10.1155/2013/417491. Epub 2013 Oct 10.

10.

Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.

Fang L, Li S, McNabb RP, Nie Q, Kuo AN, Toth CA, Izatt JA, Farsiu S.

IEEE Trans Med Imaging. 2013 Nov;32(11):2034-49. doi: 10.1109/TMI.2013.2271904. Epub 2013 Jul 3.

11.

High dynamic range imaging concept-based signal enhancement method reduced the optical coherence tomography measurement variability.

Ishikawa H, Chen CL, Wollstein G, Grimm JL, Ling Y, Bilonick RA, Sigal IA, Kagemann L, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 Jan 30;54(1):836-41. doi: 10.1167/iovs.12-10990.

12.

Dual tree complex wavelet transform based denoising of optical microscopy images.

Bal U.

Biomed Opt Express. 2012 Dec 1;3(12):3231-9. doi: 10.1364/BOE.3.003231. Epub 2012 Nov 13.

13.

Wavelet denoising of multiframe optical coherence tomography data.

Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP.

Biomed Opt Express. 2012 Mar 1;3(3):572-89. doi: 10.1364/BOE.3.000572. Epub 2012 Feb 22.

14.

Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.

Debuc DC, Salinas HM, Ranganathan S, Tátrai E, Gao W, Shen M, Wang J, Somfai GM, Puliafito CA.

J Biomed Opt. 2010 Jul-Aug;15(4):046015. doi: 10.1117/1.3470116.

15.

Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging.

Han JH, Lee J, Kang JU.

Opt Express. 2010 Mar 29;18(7):7427-39. doi: 10.1364/OE.18.007427.

Supplemental Content

Support Center