Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 35

1.

β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis.

Medina-Puche L, Castelló MJ, Canet JV, Lamilla J, Colombo ML, Tornero P.

PLoS One. 2017 Jul 28;12(7):e0181820. doi: 10.1371/journal.pone.0181820. eCollection 2017.

2.

Gene co-expression network connectivity is an important determinant of selective constraint.

Mähler N, Wang J, Terebieniec BK, Ingvarsson PK, Street NR, Hvidsten TR.

PLoS Genet. 2017 Apr 13;13(4):e1006402. doi: 10.1371/journal.pgen.1006402. eCollection 2017 Apr.

3.

Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture.

Clauw P, Coppens F, Korte A, Herman D, Slabbinck B, Dhondt S, Van Daele T, De Milde L, Vermeersch M, Maleux K, Maere S, Gonzalez N, Inzé D.

Plant Cell. 2016 Oct;28(10):2417-2434. Epub 2016 Oct 11.

4.

Plant Resistance Inducers against Pathogens in Solanaceae Species-From Molecular Mechanisms to Field Application.

Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E.

Int J Mol Sci. 2016 Oct 2;17(10). pii: E1673. Review.

6.

Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions.

Zan Y, Shen X, Forsberg SK, Carlborg Ö.

G3 (Bethesda). 2016 Aug 9;6(8):2319-28. doi: 10.1534/g3.116.030874.

7.

Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.

Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES.

Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6397-406. doi: 10.1073/pnas.1519926112. Epub 2015 Nov 2.

8.

Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis.

Jensen LM, Kliebenstein DJ, Burow M.

Front Plant Sci. 2015 Sep 23;6:762. doi: 10.3389/fpls.2015.00762. eCollection 2015.

9.

Metabolic fingerprinting of Arabidopsis thaliana accessions.

Sotelo-Silveira M, Chauvin AL, Marsch-Martínez N, Winkler R, de Folter S.

Front Plant Sci. 2015 May 27;6:365. doi: 10.3389/fpls.2015.00365. eCollection 2015.

10.

Network Analyses Reveal Shifts in Transcript Profiles and Metabolites That Accompany the Expression of SUN and an Elongated Tomato Fruit.

Clevenger JP, Van Houten J, Blackwood M, Rodríguez GR, Jikumaru Y, Kamiya Y, Kusano M, Saito K, Visa S, van der Knaap E.

Plant Physiol. 2015 Jul;168(3):1164-78. doi: 10.1104/pp.15.00379. Epub 2015 May 4.

11.

A systematic simulation of the effect of salicylic acid on sphingolipid metabolism.

Shi C, Yin J, Liu Z, Wu JX, Zhao Q, Ren J, Yao N.

Front Plant Sci. 2015 Mar 25;6:186. doi: 10.3389/fpls.2015.00186. eCollection 2015.

12.

The AT-hook motif-encoding gene METABOLIC NETWORK MODULATOR 1 underlies natural variation in Arabidopsis primary metabolism.

Li B, Kliebenstein DJ.

Front Plant Sci. 2014 Aug 22;5:415. doi: 10.3389/fpls.2014.00415. eCollection 2014.

13.

Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress.

Wang Y, Yang L, Zheng Z, Grumet R, Loescher W, Zhu JK, Yang P, Hu Y, Chan Z.

PLoS One. 2013 Jul 23;8(7):e69036. doi: 10.1371/journal.pone.0069036. Print 2013.

14.

Identifying genotype-by-environment interactions in the metabolism of germinating arabidopsis seeds using generalized genetical genomics.

Joosen RV, Arends D, Li Y, Willems LA, Keurentjes JJ, Ligterink W, Jansen RC, Hilhorst HW.

Plant Physiol. 2013 Jun;162(2):553-66. doi: 10.1104/pp.113.216176. Epub 2013 Apr 19.

15.

Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases.

Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB.

PLoS One. 2013;8(2):e56814. doi: 10.1371/journal.pone.0056814. Epub 2013 Feb 25.

16.

Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis.

Wituszynska W, Slesak I, Vanderauwera S, Szechynska-Hebda M, Kornas A, Van Der Kelen K, Mühlenbock P, Karpinska B, Mackowski S, Van Breusegem F, Karpinski S.

Plant Physiol. 2013 Apr;161(4):1795-805. doi: 10.1104/pp.112.208116. Epub 2013 Feb 11.

17.

Exploring the shallow end; estimating information content in transcriptomics studies.

Kliebenstein DJ.

Front Plant Sci. 2012 Sep 10;3:213. doi: 10.3389/fpls.2012.00213. eCollection 2012.

18.

Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana.

Waters BM, McInturf SA, Stein RJ.

J Exp Bot. 2012 Oct;63(16):5903-18. doi: 10.1093/jxb/ers239. Epub 2012 Sep 7.

19.

Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection.

Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B.

Front Plant Sci. 2012 May 29;3:108. doi: 10.3389/fpls.2012.00108. eCollection 2012.

20.

Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE.

Plant Cell. 2012 Mar;24(3):893-914. doi: 10.1105/tpc.112.096180. Epub 2012 Mar 9.

Supplemental Content

Support Center