Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 24

2.

Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N.

Appl Environ Microbiol. 2016 Apr 4;82(8):2545-54. doi: 10.1128/AEM.03842-15.

3.

Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor.

Wang VB, Sivakumar K, Yang L, Zhang Q, Kjelleberg S, Loo SC, Cao B.

Sci Rep. 2015 Jun 10;5:11222. doi: 10.1038/srep11222.

4.

Influence of anode surface chemistry on microbial fuel cell operation.

Santoro C, Babanova S, Artyushkova K, Cornejo JA, Ista L, Bretschger O, Marsili E, Atanassov P, Schuler AJ.

Bioelectrochemistry. 2015 Dec;106(Pt A):141-9. doi: 10.1016/j.bioelechem.2015.05.002.

5.

Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR.

Appl Environ Microbiol. 2014 Aug;80(15):4599-605.

6.
7.

A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

Yuan SJ, He H, Sheng GP, Chen JJ, Tong ZH, Cheng YY, Li WW, Lin ZQ, Zhang F, Yu HQ.

Sci Rep. 2013;3:1315. doi: 10.1038/srep01315.

8.

Transcriptomic and genetic analysis of direct interspecies electron transfer.

Shrestha PM, Rotaru AE, Summers ZM, Shrestha M, Liu F, Lovley DR.

Appl Environ Microbiol. 2013 Apr;79(7):2397-404. doi: 10.1128/AEM.03837-12.

9.

Molecular analysis of the in situ growth rates of subsurface Geobacter species.

Holmes DE, Giloteaux L, Barlett M, Chavan MA, Smith JA, Williams KH, Wilkins M, Long P, Lovley DR.

Appl Environ Microbiol. 2013 Mar;79(5):1646-53. doi: 10.1128/AEM.03263-12.

10.

The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features.

Aklujkar M, Haveman SA, DiDonato R Jr, Chertkov O, Han CS, Land ML, Brown P, Lovley DR.

BMC Genomics. 2012 Dec 10;13:690. doi: 10.1186/1471-2164-13-690.

11.

Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, Downing KH, Long PE, Comolli LR, Banfield JF.

ISME J. 2013 Feb;7(2):338-50. doi: 10.1038/ismej.2012.103.

12.

Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.

Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR.

Appl Environ Microbiol. 2012 Nov;78(21):7645-51. doi: 10.1128/AEM.01946-12.

13.

Microbial interspecies electron transfer via electric currents through conductive minerals.

Kato S, Hashimoto K, Watanabe K.

Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10042-6. doi: 10.1073/pnas.1117592109.

14.

Convergent development of anodic bacterial communities in microbial fuel cells.

Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE.

ISME J. 2012 Nov;6(11):2002-13. doi: 10.1038/ismej.2012.42.

15.

Harvesting electricity with Geobacter bremensis isolated from compost.

Nercessian O, Parot S, Délia ML, Bergel A, Achouak W.

PLoS One. 2012;7(3):e34216. doi: 10.1371/journal.pone.0034216.

16.

Constraint-based modeling analysis of the metabolism of two Pelobacter species.

Sun J, Haveman SA, Bui O, Fahland TR, Lovley DR.

BMC Syst Biol. 2010 Dec 23;4:174. doi: 10.1186/1752-0509-4-174.

17.
18.

Initial development and structure of biofilms on microbial fuel cell anodes.

Read ST, Dutta P, Bond PL, Keller J, Rabaey K.

BMC Microbiol. 2010 Apr 1;10:98. doi: 10.1186/1471-2180-10-98.

19.

Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methé BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR.

PLoS One. 2009 May 20;4(5):e5628. doi: 10.1371/journal.pone.0005628.

20.

Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell.

Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE.

Appl Environ Microbiol. 2009 Jun;75(11):3673-8. doi: 10.1128/AEM.02600-08.

Items per page

Supplemental Content

Support Center