Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

Determination of the Proteomic Response to Lapatinib Treatment using a comprehensive and reproducible ion-current-based proteomics strategy.

O'Connell K, Li J, Engler F, Hennessy K, O'Neill F, Straubinger RM, Qu J, O'Connor R.

J Proteom Genom Res. 2013;1(3):27-42. doi: 10.14302/issn.2326-0793.jpgr-13-257. Epub 2013 Sep 8.

2.

Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway.

Srivastava S, Mohibi S, Mirza S, Band H, Band V.

Cell Cycle. 2017 Aug 18;16(16):1515-1525. doi: 10.1080/15384101.2017.1339846. Epub 2017 Jul 31.

3.

Identification of potential new treatment response markers and therapeutic targets using a Gaussian process-based method in lapatinib insensitive breast cancer models.

Santra T, Roche S, Conlon N, O'Donovan N, Crown J, O'Connor R, Kolch W.

PLoS One. 2017 May 8;12(5):e0177058. doi: 10.1371/journal.pone.0177058. eCollection 2017.

4.

Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer.

Azad AK, Lawen A, Keith JM.

PLoS One. 2017 Mar 13;12(3):e0173331. doi: 10.1371/journal.pone.0173331. eCollection 2017.

5.

FOXO3a and the MAPK p38 are activated by cetuximab to induce cell death and inhibit cell proliferation and their expression predicts cetuximab efficacy in colorectal cancer.

Marzi L, Combes E, Vié N, Ayrolles-Torro A, Tosi D, Desigaud D, Perez-Gracia E, Larbouret C, Montagut C, Iglesias M, Jarlier M, Denis V, Linares LK, Lam EW, Martineau P, Del Rio M, Gongora C.

Br J Cancer. 2016 Nov 8;115(10):1223-1233. doi: 10.1038/bjc.2016.313. Epub 2016 Sep 29.

6.

Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients.

Duchnowska R, Wysocki PJ, Korski K, Czartoryska-Arłukowicz B, Niwińska A, Orlikowska M, Radecka B, Studziński M, Demlova R, Ziółkowska B, Merdalska M, Hajac Ł, Myśliwiec P, Zuziak D, Dębska-Szmich S, Lang I, Foszczyńska-Kłoda M, Karczmarek-Borowska B, Żawrocki A, Kowalczyk A, Biernat W, Jassem J; Central and East European Oncology Group (CEEOG).

Oncotarget. 2016 Jan 5;7(1):550-64. doi: 10.18632/oncotarget.6375.

7.

Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer.

Park YH, Shin HT, Jung HH, Choi YL, Ahn T, Park K, Lee A, Do IG, Kim JY, Ahn JS, Park WY, Im YH.

Oncotarget. 2015 Oct 13;6(31):32027-38. doi: 10.18632/oncotarget.5184.

8.

Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family.

Kawai M, Nakashima A, Kamada S, Kikkawa U.

J Biomed Sci. 2015 Jul 4;22:48. doi: 10.1186/s12929-015-0150-2.

9.

Evaluating the evidence for targeting FOXO3a in breast cancer: a systematic review.

Taylor S, Lam M, Pararasa C, Brown JE, Carmichael AR, Griffiths HR.

Cancer Cell Int. 2015 Jan 24;15(1):1. doi: 10.1186/s12935-015-0156-6. eCollection 2015.

10.

Dynamic transcription factor activity and networks during ErbB2 breast oncogenesis and targeted therapy.

Weiss MS, Peñalver Bernabé B, Shin S, Asztalos S, Dubbury SJ, Mui MD, Bellis AD, Bluver D, Tonetti DA, Saez-Rodriguez J, Broadbelt LJ, Jeruss JS, Shea LD.

Integr Biol (Camb). 2014 Dec;6(12):1170-82. doi: 10.1039/c4ib00086b.

11.

Lentiviral vector-based insertional mutagenesis identifies genes involved in the resistance to targeted anticancer therapies.

Ranzani M, Annunziato S, Calabria A, Brasca S, Benedicenti F, Gallina P, Naldini L, Montini E.

Mol Ther. 2014 Dec;22(12):2056-68. doi: 10.1038/mt.2014.174. Epub 2014 Sep 8.

12.

miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

Corcoran C, Rani S, Breslin S, Gogarty M, Ghobrial IM, Crown J, O'Driscoll L.

Mol Cancer. 2014 Mar 24;13:71. doi: 10.1186/1476-4598-13-71.

13.

Targeted treatment of head and neck squamous-cell carcinoma: potential of lapatinib.

Gandhi MD, Agulnik M.

Onco Targets Ther. 2014 Feb 13;7:245-51. doi: 10.2147/OTT.S46933. eCollection 2014. Review.

14.

Structure-activity relationships of peptidomimetics that inhibit PPI of HER2-HER3.

Kanthala S, Gauthier T, Satyanarayanajois S.

Biopolymers. 2014 Jun;101(6):693-702. doi: 10.1002/bip.22441.

15.

Survival of HER2-Positive Breast Cancer Cells: Receptor Signaling to Apoptotic Control Centers.

Fink MY, Chipuk JE.

Genes Cancer. 2013 May;4(5-6):187-95. doi: 10.1177/1947601913488598.

16.

Lapatinib induces p27(Kip1)-dependent G₁ arrest through both transcriptional and post-translational mechanisms.

Tang L, Wang Y, Strom A, Gustafsson JÅ, Guan X.

Cell Cycle. 2013 Aug 15;12(16):2665-74. doi: 10.4161/cc.25728. Epub 2013 Jul 29.

17.

New developments in the treatment of HER2-positive breast cancer.

Nahta R.

Breast Cancer (Dove Med Press). 2012 May 1;4:53-64.

18.

Profiling pathway-specific novel therapeutics in preclinical assessment for central nervous system atypical teratoid rhabdoid tumors (CNS ATRT): favorable activity of targeting EGFR- ErbB2 signaling with lapatinib.

Singh A, Lun X, Jayanthan A, Obaid H, Ruan Y, Strother D, Chi SN, Smith A, Forsyth P, Narendran A.

Mol Oncol. 2013 Jun;7(3):497-512. doi: 10.1016/j.molonc.2013.01.001. Epub 2013 Jan 11.

19.

Molecular Mechanisms of Trastuzumab-Based Treatment in HER2-Overexpressing Breast Cancer.

Nahta R.

ISRN Oncol. 2012;2012:428062. doi: 10.5402/2012/428062. Epub 2012 Nov 22.

20.

FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice.

Lee SY, Meier R, Furuta S, Lenburg ME, Kenny PA, Xu R, Bissell MJ.

J Clin Invest. 2012 Sep;122(9):3211-20. doi: 10.1172/JCI60498. Epub 2012 Aug 13.

Supplemental Content

Support Center