Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Clinical significance of T cell metabolic reprogramming in cancer.

Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA.

Clin Transl Med. 2016 Dec;5(1):29. doi: 10.1186/s40169-016-0110-9. Epub 2016 Aug 10. Review.

2.

Construction of a metabolomics profile of arsenic trioxide effect in gastric carcinoma cell line SGC7901.

Chen Z, Zhang H, Yang L, Jiang H, Guo S, Li Y, Tao S.

Acta Biochim Biophys Sin (Shanghai). 2016 May;48(5):474-81. doi: 10.1093/abbs/gmw022. Epub 2016 Apr 3.

PMID:
27044562
3.

AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, Ding Y, Gong H, Mo C, Zhang J, Qin J, Ma Y, Huang N, Xiang R, Xiao H.

Aging Cell. 2016 Jun;15(3):416-27. doi: 10.1111/acel.12446. Epub 2016 Feb 18.

4.

Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, Leads to Altered Carbohydrate Metabolism in Cancer Cells.

Tan B, Dong S, Shepard RL, Kays L, Roth KD, Geeganage S, Kuo MS, Zhao G.

J Biol Chem. 2015 Jun 19;290(25):15812-24. doi: 10.1074/jbc.M114.632141. Epub 2015 May 5.

5.

Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase.

Kim DE, Kim Y, Cho DH, Jeong SY, Kim SB, Suh N, Lee JS, Choi EK, Koh JY, Hwang JJ, Kim CS.

Mol Cells. 2015;38(2):138-44. doi: 10.14348/molcells.2015.2193. Epub 2014 Dec 24.

6.

Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

Tolstikov V, Nikolayev A, Dong S, Zhao G, Kuo MS.

PLoS One. 2014 Dec 8;9(12):e114019. doi: 10.1371/journal.pone.0114019. eCollection 2014.

7.

Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways.

Allison SJ, Knight JR, Granchi C, Rani R, Minutolo F, Milner J, Phillips RM.

Oncogenesis. 2014 May 12;3:e102. doi: 10.1038/oncsis.2014.16.

8.

Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin.

Maleki Vareki S, Rytelewski M, Figueredo R, Chen D, Ferguson PJ, Vincent M, Min W, Zheng X, Koropatnick J.

Oncotarget. 2014 May 15;5(9):2778-91.

9.

Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

Randhawa M, Sangar V, Tucker-Samaras S, Southall M.

PLoS One. 2014 Mar 6;9(3):e90367. doi: 10.1371/journal.pone.0090367. eCollection 2014.

10.

New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide.

Dong WR, Sun CC, Zhu G, Hu SH, Xiang LX, Shao JZ.

BMC Microbiol. 2014 Feb 8;14:29. doi: 10.1186/1471-2180-14-29.

11.

Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.

Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, Chini EN.

Clin Cancer Res. 2014 Jan 1;20(1):120-30. doi: 10.1158/1078-0432.CCR-13-0150. Epub 2013 Sep 11.

12.

Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications.

Tan B, Young DA, Lu ZH, Wang T, Meier TI, Shepard RL, Roth K, Zhai Y, Huss K, Kuo MS, Gillig J, Parthasarathy S, Burkholder TP, Smith MC, Geeganage S, Zhao G.

J Biol Chem. 2013 Feb 1;288(5):3500-11. doi: 10.1074/jbc.M112.394510. Epub 2012 Dec 13.

13.

Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.

Cea M, Cagnetta A, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Roccaro A, Sacco A, Calimeri T, Cottini F, Jakubikova J, Kong SY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC.

Blood. 2012 Oct 25;120(17):3519-29. doi: 10.1182/blood-2012-03-416776. Epub 2012 Sep 5.

14.

Novel synthetic route to the C-nucleoside, 2-deoxy benzamide riboside.

Midtkandal RR, Redpath P, Trammell SA, Macdonald SJ, Brenner C, Migaud ME.

Bioorg Med Chem Lett. 2012 Aug 15;22(16):5204-7. doi: 10.1016/j.bmcl.2012.06.069. Epub 2012 Jun 28.

15.

Nicotinamide Phosphoribosyltransferase in Human Diseases.

Zhang LQ, Heruth DP, Ye SQ.

J Bioanal Biomed. 2011 Jan 7;3:13-25.

16.

Genetically encoded fluorescent sensors for intracellular NADH detection.

Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J.

Cell Metab. 2011 Oct 5;14(4):555-66. doi: 10.1016/j.cmet.2011.09.004.

17.

Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase.

Olesen UH, Petersen JG, Garten A, Kiess W, Yoshino J, Imai S, Christensen MK, Fristrup P, Thougaard AV, Björkling F, Jensen PB, Nielsen SJ, Sehested M.

BMC Cancer. 2010 Dec 12;10:677. doi: 10.1186/1471-2407-10-677.

18.

Novel avenues of drug discovery and biomarkers for diabetes mellitus.

Maiese K, Chong ZZ, Shang YC, Hou J.

J Clin Pharmacol. 2011 Feb;51(2):128-52. doi: 10.1177/0091270010362904. Epub 2010 Mar 10. Review.

19.

NAD+ auxotrophy is bacteriocidal for the tubercle bacilli.

Vilchèze C, Weinrick B, Wong KW, Chen B, Jacobs WR Jr.

Mol Microbiol. 2010 Apr;76(2):365-77. doi: 10.1111/j.1365-2958.2010.07099.x. Epub 2010 Feb 28.

20.

Diabetes mellitus: channeling care through cellular discovery.

Maiese K, Shang YC, Chong ZZ, Hou J.

Curr Neurovasc Res. 2010 Feb;7(1):59-64.

Items per page

Supplemental Content

Write to the Help Desk