Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts.

Smoly I, Shemesh N, Ziv-Ukelson M, Ben-Zvi A, Yeger-Lotem E.

PLoS Comput Biol. 2017 Jan 30;13(1):e1005221. doi: 10.1371/journal.pcbi.1005221.

2.

Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes.

Prasad TS, Mohanty AK, Kumar M, Sreenivasamurthy SK, Dey G, Nirujogi RS, Pinto SM, Madugundu AK, Patil AH, Advani J, Manda SS, Gupta MK, Dwivedi SB, Kelkar DS, Hall B, Jiang X, Peery A, Rajagopalan P, Yelamanchi SD, Solanki HS, Raja R, Sathe GJ, Chavan S, Verma R, Patel KM, Jain AP, Syed N, Datta KK, Khan AA, Dammalli M, Jayaram S, Radhakrishnan A, Mitchell CJ, Na CH, Kumar N, Sinnis P, Sharakhov IV, Wang C, Gowda H, Tu Z, Kumar A, Pandey A.

Genome Res. 2017 Jan;27(1):133-144. doi: 10.1101/gr.201368.115.

PMID:
28003436
3.

Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

Okada H, Ebhardt HA, Vonesch SC, Aebersold R, Hafen E.

Nat Commun. 2016 Sep 1;7:12649. doi: 10.1038/ncomms12649.

4.

Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster.

Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH.

PeerJ. 2016 May 24;4:e2080. doi: 10.7717/peerj.2080.

5.

Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation.

Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM.

Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):521-45. doi: 10.1146/annurev-anchem-071015-041722.

6.

Hemotin, a Regulator of Phagocytosis Encoded by a Small ORF and Conserved across Metazoans.

Pueyo JI, Magny EG, Sampson CJ, Amin U, Evans IR, Bishop SA, Couso JP.

PLoS Biol. 2016 Mar 25;14(3):e1002395. doi: 10.1371/journal.pbio.1002395.

7.

Urine Proteome Biomarkers in Kidney Diseases. I. Limits, Perspectives, and First Focus on Normal Urine.

Santucci L, Bruschi M, Candiano G, Lugani F, Petretto A, Bonanni A, Ghiggeri GM.

Biomark Insights. 2016 Mar 16;11:41-8. doi: 10.4137/BMI.S26229. Review.

8.

Dual use of peptide mass spectra: Protein atlas and genome annotation.

Walley JW, Briggs SP.

Curr Plant Biol. 2015 May 1;2:21-24.

9.

Quantitative proteomics signature profiling based on network contextualization.

Bin Goh WW, Guo T, Aebersold R, Wong L.

Biol Direct. 2015 Dec 15;10:71. doi: 10.1186/s13062-015-0098-x.

10.

Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2.

Wiemhoefer A, Stargardt A, van der Linden WA, Renner MC, van Kesteren RE, Stap J, Raspe MA, Tomkinson B, Kessels HW, Ovaa H, Overkleeft HS, Florea B, Reits EA.

Mol Cell Proteomics. 2015 Aug;14(8):2177-93. doi: 10.1074/mcp.M114.043331.

11.

Ultrasensitive proteome analysis using paramagnetic bead technology.

Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J.

Mol Syst Biol. 2014 Oct 30;10:757. doi: 10.15252/msb.20145625.

12.

Proteogenomics: concepts, applications and computational strategies.

Nesvizhskii AI.

Nat Methods. 2014 Nov;11(11):1114-25. doi: 10.1038/nmeth.3144. Review.

13.

MixGF: spectral probabilities for mixture spectra from more than one peptide.

Wang J, Bourne PE, Bandeira N.

Mol Cell Proteomics. 2014 Dec;13(12):3688-97. doi: 10.1074/mcp.O113.037218.

14.

Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq.

Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MA, Brocard M, Couso JP.

Elife. 2014 Aug 21;3:e03528. doi: 10.7554/eLife.03528.

15.

Sizing up models of heart failure: Proteomics from flies to humans.

Kooij V, Venkatraman V, Tra J, Kirk JA, Rowell J, Blice-Baum A, Cammarato A, Van Eyk JE.

Proteomics Clin Appl. 2014 Oct;8(9-10):653-64. doi: 10.1002/prca.201300123. Review.

16.

Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers.

Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, Goldberg ML.

Elife. 2014 Mar 11;3:e01695. doi: 10.7554/eLife.01695.

17.

Implementation of statistical process control for proteomic experiments via LC MS/MS.

Bereman MS, Johnson R, Bollinger J, Boss Y, Shulman N, MacLean B, Hoofnagle AN, MacCoss MJ.

J Am Soc Mass Spectrom. 2014 Apr;25(4):581-7. doi: 10.1007/s13361-013-0824-5.

18.

Proteogenomic analysis of pathogenic yeast Cryptococcus neoformans using high resolution mass spectrometry.

Nagarajha Selvan LD, Kaviyil JE, Nirujogi RS, Muthusamy B, Puttamallesh VN, Subbannayya T, Syed N, Radhakrishnan A, Kelkar DS, Ahmad S, Pinto SM, Kumar P, Madugundu AK, Nair B, Chatterjee A, Pandey A, Ravikumar R, Gowda H, Prasad TS.

Clin Proteomics. 2014 Feb 3;11(1):5. doi: 10.1186/1559-0275-11-5.

19.

Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation.

J├╝schke C, Dohnal I, Pichler P, Harzer H, Swart R, Ammerer G, Mechtler K, Knoblich JA.

Genome Biol. 2013 Nov 30;14(11):r133. doi: 10.1186/gb-2013-14-11-r133.

20.

De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

Reinhardt JA, Wanjiru BM, Brant AT, Saelao P, Begun DJ, Jones CD.

PLoS Genet. 2013;9(10):e1003860. doi: 10.1371/journal.pgen.1003860.

Supplemental Content

Support Center