Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

PRECISION MEDICINE - The Golden Gate for Detection, Treatment and Prevention of Alzheimer's Disease.

Hampel H, O'Bryant SE, Castrillo JI, Ritchie C, Rojkova K, Broich K, Benda N, Nisticò R, Frank RA, Dubois B, Escott-Price V, Lista S.

J Prev Alzheimers Dis. 2016 Dec;3(4):243-259. doi: 10.14283/jpad.2016.112. Epub 2016 Sep 6.

2.

The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism.

Vlastaridis P, Papakyriakou A, Chaliotis A, Stratikos E, Oliver SG, Amoutzias GD.

G3 (Bethesda). 2017 Apr 3;7(4):1239-1249. doi: 10.1534/g3.116.037218.

3.

The metabolome 18 years on: a concept comes of age.

Kell DB, Oliver SG.

Metabolomics. 2016;12(9):148. Epub 2016 Sep 2. Review.

4.

Rapid evolutionary adaptation to growth on an 'unfamiliar' carbon source.

Tamari Z, Yona AH, Pilpel Y, Barkai N.

BMC Genomics. 2016 Aug 24;17:674. doi: 10.1186/s12864-016-3010-x.

5.

Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.

Vos T, Hakkaart XD, de Hulster EA, van Maris AJ, Pronk JT, Daran-Lapujade P.

Microb Cell Fact. 2016 Jun 17;15(1):111. doi: 10.1186/s12934-016-0501-z.

6.

Absolute protein quantification of the yeast chaperome under conditions of heat shock.

Mackenzie RJ, Lawless C, Holman SW, Lanthaler K, Beynon RJ, Grant CM, Hubbard SJ, Eyers CE.

Proteomics. 2016 Aug;16(15-16):2128-40. doi: 10.1002/pmic.201500503. Epub 2016 Jul 22.

7.

The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

Ewald JC, Kuehne A, Zamboni N, Skotheim JM.

Mol Cell. 2016 May 19;62(4):532-45. doi: 10.1016/j.molcel.2016.02.017.

8.

A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

Barenholz U, Keren L, Segal E, Milo R.

PLoS One. 2016 Apr 13;11(4):e0153344. doi: 10.1371/journal.pone.0153344. eCollection 2016.

9.

Defining Molecular Basis for Longevity Traits in Natural Yeast Isolates.

Kaya A, Ma S, Wasko B, Lee M, Kaeberlein M, Gladyshev VN.

NPJ Aging Mech Dis. 2015;1. pii: 15001. Epub 2015 Sep 28.

10.

Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen.

Airoldi EM, Miller D, Athanasiadou R, Brandt N, Abdul-Rahman F, Neymotin B, Hashimoto T, Bahmani T, Gresham D.

Mol Biol Cell. 2016 Apr 15;27(8):1383-96. doi: 10.1091/mbc.E14-05-1013. Epub 2016 Mar 3.

11.

Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations.

Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B.

Front Bioeng Biotechnol. 2016 Feb 18;4:17. doi: 10.3389/fbioe.2016.00017. eCollection 2016. Review.

12.

Self-establishing communities enable cooperative metabolite exchange in a eukaryote.

Campbell K, Vowinckel J, Mülleder M, Malmsheimer S, Lawrence N, Calvani E, Miller-Fleming L, Alam MT, Christen S, Keller MA, Ralser M.

Elife. 2015 Oct 26;4. pii: e09943. doi: 10.7554/eLife.09943.

13.

Bacterial transcriptome reorganization in thermal adaptive evolution.

Ying BW, Matsumoto Y, Kitahara K, Suzuki S, Ono N, Furusawa C, Kishimoto T, Yomo T.

BMC Genomics. 2015 Oct 16;16:802. doi: 10.1186/s12864-015-1999-x.

14.

A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P.

Microb Cell Fact. 2015 Jul 30;14:109. doi: 10.1186/s12934-015-0295-4.

15.

Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling.

Ho YH, Gasch AP.

Curr Genet. 2015 Nov;61(4):503-11. doi: 10.1007/s00294-015-0491-0. Epub 2015 May 10. Review.

16.

Estimating a structured covariance matrix from multi-lab measurements in high-throughput biology.

Franks AM, Csárdi G, Drummond DA, Airoldi EM.

J Am Stat Assoc. 2015 Mar 1;110(509):27-44.

17.

Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast.

Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA.

PLoS Genet. 2015 May 7;11(5):e1005206. doi: 10.1371/journal.pgen.1005206. eCollection 2015 May.

18.
19.

Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris.

Edwards-Jones B, Aw R, Barton GR, Tredwell GD, Bundy JG, Leak DJ.

PLoS One. 2015 Mar 18;10(3):e0119637. doi: 10.1371/journal.pone.0119637. eCollection 2015.

20.

Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria.

Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR.

Mol Syst Biol. 2015 Feb 12;11(1):784. doi: 10.15252/msb.20145697.

Supplemental Content

Support Center