Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.
2.

Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms.

Nguyen SV, Harhay GP, Bono JL, Smith TP, Harhay DM.

mSystems. 2017 Feb 28;2(1). pii: e00190-16. doi: 10.1128/mSystems.00190-16. eCollection 2017 Jan-Feb.

3.
4.

A distinct holoenzyme organization for two-subunit pyruvate carboxylase.

Choi PH, Jo J, Lin YC, Lin MH, Chou CY, Dietrich LE, Tong L.

Nat Commun. 2016 Oct 6;7:12713. doi: 10.1038/ncomms12713.

5.

Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.

Good NM, Vu HN, Suriano CJ, Subuyuj GA, Skovran E, Martinez-Gomez NC.

J Bacteriol. 2016 Oct 21;198(22):3109-3118. Print 2016 Nov 15.

6.

Identification of bacterial communities in sediments of Poyang Lake, the largest freshwater lake in China.

Kou W, Zhang J, Lu X, Ma Y, Mou X, Wu L.

Springerplus. 2016 Apr 1;5:401. doi: 10.1186/s40064-016-2026-7. eCollection 2016.

7.

Genetic determinants of heat resistance in Escherichia coli.

Mercer RG, Zheng J, Garcia-Hernandez R, Ruan L, Gänzle MG, McMullen LM.

Front Microbiol. 2015 Sep 9;6:932. doi: 10.3389/fmicb.2015.00932. eCollection 2015.

8.

The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign.

Salcher MM, Neuenschwander SM, Posch T, Pernthaler J.

ISME J. 2015 Nov;9(11):2442-53. doi: 10.1038/ismej.2015.55. Epub 2015 May 5.

9.

XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”.

Wu ML, Wessels JC, Pol A, Op den Camp HJ, Jetten MS, van Niftrik L.

Appl Environ Microbiol. 2015 Feb;81(4):1442-51.

10.

Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.

Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF.

PLoS One. 2014 Sep 11;9(9):e106704. doi: 10.1371/journal.pone.0106704. eCollection 2014.

11.

The expanded diversity of methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes.

Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG, Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L.

PLoS One. 2014 Jul 24;9(7):e102458. doi: 10.1371/journal.pone.0102458. eCollection 2014.

12.

A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae.

Beck DA, Kalyuzhnaya MG, Malfatti S, Tringe SG, Glavina Del Rio T, Ivanova N, Lidstrom ME, Chistoserdova L.

PeerJ. 2013 Feb 19;1:e23. doi: 10.7717/peerj.23. Print 2013.

13.

Structure prediction and analysis of MxaF from obligate, facultative and restricted facultative methylobacterium.

Singh RP, Singh RN, Srivastava MK, Srivastava AK, Kumar S, Dubey RC, Sharma AK.

Bioinformation. 2012;8(21):1042-6. doi: 10.6026/97320630081042. Epub 2012 Oct 31.

14.

An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis.

Beck DA, Hendrickson EL, Vorobev A, Wang T, Lim S, Kalyuzhnaya MG, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2011 Sep;193(18):4758-65. doi: 10.1128/JB.05375-11. Epub 2011 Jul 15.

15.

Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review.

Akhverdyan VZ, Gak ER, Tokmakova IL, Stoynova NV, Yomantas YA, Mashko SV.

Appl Microbiol Biotechnol. 2011 Aug;91(4):857-71. doi: 10.1007/s00253-011-3416-y. Epub 2011 Jun 23. Review.

16.

Methylotrophy in a lake: from metagenomics to single-organism physiology.

Chistoserdova L.

Appl Environ Microbiol. 2011 Jul;77(14):4705-11. doi: 10.1128/AEM.00314-11. Epub 2011 May 27. Review.

17.

Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae.

Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DA, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L.

J Bacteriol. 2011 Aug;193(15):3757-64. doi: 10.1128/JB.00404-11. Epub 2011 May 27.

18.

A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth.

Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME.

PLoS One. 2010 Nov 24;5(11):e14091. doi: 10.1371/journal.pone.0014091.

19.

Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy.

Hendrickson EL, Beck DA, Wang T, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2010 Oct;192(19):4859-67. doi: 10.1128/JB.00512-10. Epub 2010 Jul 16.

20.

Aromatic amino acid auxotrophs constructed by recombinant marker exchange in Methylophilus methylotrophus AS1 cells expressing the aroP-encoded transporter of Escherichia coli.

Yomantas YA, Tokmakova IL, Gorshkova NV, Abalakina EG, Kazakova SM, Gak ER, Mashko SV.

Appl Environ Microbiol. 2010 Jan;76(1):75-83. doi: 10.1128/AEM.02217-09. Epub 2009 Oct 30.

Supplemental Content

Support Center