Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 223

1.

Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease.

Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J.

Front Immunol. 2018 Apr 17;9:706. doi: 10.3389/fimmu.2018.00706. eCollection 2018. Review.

2.

Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c.

Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, Klose A, Brand SM.

Front Physiol. 2018 Apr 17;9:395. doi: 10.3389/fphys.2018.00395. eCollection 2018.

3.

Non-Coding RNA in the Pathogenesis, Progression and Treatment of Hypertension.

Leimena C, Qiu H.

Int J Mol Sci. 2018 Mar 21;19(4). pii: E927. doi: 10.3390/ijms19040927. Review.

4.

Silencing a Multifunctional microRNA Is Beneficial for Stroke Recovery.

Roitbak T.

Front Mol Neurosci. 2018 Feb 23;11:58. doi: 10.3389/fnmol.2018.00058. eCollection 2018. Review.

5.

Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap.

Castellan RFP, Meloni M.

Front Cardiovasc Med. 2018 Feb 5;5:7. doi: 10.3389/fcvm.2018.00007. eCollection 2018. Review.

6.

New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications.

Wang Y, Wang L, Chen C, Chu X.

Mol Cancer. 2018 Feb 7;17(1):22. doi: 10.1186/s12943-018-0766-4. Review.

7.

miRNA as a New Regulatory Mechanism of Estrogen Vascular Action.

Pérez-Cremades D, Mompeón A, Vidal-Gómez X, Hermenegildo C, Novella S.

Int J Mol Sci. 2018 Feb 6;19(2). pii: E473. doi: 10.3390/ijms19020473. Review.

8.

Dicer-like Proteins Regulate the Growth, Conidiation, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis.

Wang Q, An B, Hou X, Guo Y, Luo H, He C.

Front Microbiol. 2018 Jan 4;8:2621. doi: 10.3389/fmicb.2017.02621. eCollection 2017.

9.

Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post-Stroke Mortality.

Kim JO, Bae J, Kim J, Oh SH, An HJ, Han IB, Oh D, Kim OJ, Kim NK.

J Stroke. 2018 Jan;20(1):110-121. doi: 10.5853/jos.2017.02586. Epub 2018 Jan 31.

10.

Noncoding RNAs in Wound Healing: A New and Vast Frontier.

Luan A, Hu MS, Leavitt T, Brett EA, Wang KC, Longaker MT, Wan DC.

Adv Wound Care (New Rochelle). 2018 Jan 1;7(1):19-27. doi: 10.1089/wound.2017.0765. Review.

11.

Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress.

Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z.

Int J Mol Med. 2017 Dec;40(6):1719-1730. doi: 10.3892/ijmm.2017.3174. Epub 2017 Oct 5.

12.

MicroRNA as Therapeutic Targets for Chronic Wound Healing.

Mulholland EJ, Dunne N, McCarthy HO.

Mol Ther Nucleic Acids. 2017 Sep 15;8:46-55. doi: 10.1016/j.omtn.2017.06.003. Epub 2017 Jun 9. Review.

13.

Dual Role of MiR-21-Mediated Signaling in HUVECs and Rat Surgical Flap under Normoxia and Hypoxia Condition.

Chang CH, Yen MC, Liao SH, Hsu YL, Lai CS, Kuo YR, Hsu YL.

Int J Mol Sci. 2017 Sep 7;18(9). pii: E1917. doi: 10.3390/ijms18091917.

14.

Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress.

Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL.

Nutrients. 2017 Sep 1;9(9). pii: E966. doi: 10.3390/nu9090966. Review.

15.

From Inflammation to Current and Alternative Therapies Involved in Wound Healing.

Serra MB, Barroso WA, da Silva NN, Silva SDN, Borges ACR, Abreu IC, Borges MODR.

Int J Inflam. 2017;2017:3406215. doi: 10.1155/2017/3406215. Epub 2017 Jul 25. Review.

16.

Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies.

Minhas G, Mathur D, Ragavendrasamy B, Sharma NK, Paanu V, Anand A.

Front Neurosci. 2017 Jul 11;11:386. doi: 10.3389/fnins.2017.00386. eCollection 2017. Review.

17.

Renal Protection Mediated by Hypoxia Inducible Factor-1α Depends on Proangiogenesis Function of miR-21 by Targeting Thrombospondin 1.

Xu X, Song N, Zhang X, Jiao X, Hu J, Liang M, Teng J, Ding X.

Transplantation. 2017 Aug;101(8):1811-1819. doi: 10.1097/TP.0000000000001501.

18.

Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

Canfrán-Duque A, Rotllan N, Zhang X, Fernández-Fuertes M, Ramírez-Hidalgo C, Araldi E, Daimiel L, Busto R, Fernández-Hernando C, Suárez Y.

EMBO Mol Med. 2017 Sep;9(9):1244-1262. doi: 10.15252/emmm.201607492.

19.

miRNAs in vascular integrity.

Cao Y, Zhang PY.

Exp Ther Med. 2017 Jul;14(1):473-477. doi: 10.3892/etm.2017.4515. Epub 2017 May 25.

20.

Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs.

Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R.

Cell Mol Biol Lett. 2016 Sep 6;21:16. doi: 10.1186/s11658-016-0017-x. eCollection 2016. Review.

Supplemental Content

Support Center