Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects.

Petersen EJ, Flores-Cervantes DX, Bucheli TD, Elliott LC, Fagan JA, Gogos A, Hanna S, Kägi R, Mansfield E, Bustos AR, Plata DL, Reipa V, Westerhoff P, Winchester MR.

Environ Sci Technol. 2016 May 3;50(9):4587-605. doi: 10.1021/acs.est.5b05647.

PMID:
27050152
2.

Carbon Nanomaterials in Agriculture: A Critical Review.

Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC.

Front Plant Sci. 2016 Feb 22;7:172. doi: 10.3389/fpls.2016.00172. Review.

3.

Preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) with ethylenediamine-modified graphene oxide.

Zawisza B, Baranik A, Malicka E, Talik E, Sitko R.

Mikrochim Acta. 2016;183:231-240.

4.

Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.

Wang R, N Meredith A, Lee M Jr, Deutsch D, Miadzvedskaya L, Braun E, Pantano P, Harper S, Draper R.

Nanotoxicology. 2016 Aug;10(6):689-98. doi: 10.3109/17435390.2015.1107147.

5.

Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry.

Oberdörster G, Castranova V, Asgharian B, Sayre P.

J Toxicol Environ Health B Crit Rev. 2015;18(3-4):121-212. doi: 10.1080/10937404.2015.1051611.

6.

Optimization of ZnO-NPs to Investigate Their Safe Application by Assessing Their Effect on Soil Nematode Caenorhabditis elegans.

Gupta S, Kushwah T, Vishwakarma A, Yadav S.

Nanoscale Res Lett. 2015 Dec;10(1):1010. doi: 10.1186/s11671-015-1010-4.

7.

When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles.

Ikuma K, Decho AW, Lau BL.

Front Microbiol. 2015 Jun 16;6:591. doi: 10.3389/fmicb.2015.00591. Review.

8.

The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos.

Yan J, Lin B, Hu C, Zhang H, Lin Z, Xi Z.

Nanoscale Res Lett. 2014 Aug 20;9(1):406. doi: 10.1186/1556-276X-9-406.

9.

Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water.

Lanphere JD, Rogers B, Luth C, Bolster CH, Walker SL.

Environ Eng Sci. 2014 Jul 1;31(7):350-359.

10.

The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

Kumar N, Palmer GR, Shah V, Walker VK.

PLoS One. 2014 Jun 13;9(6):e99953. doi: 10.1371/journal.pone.0099953.

11.

Bioaccumulation and ecotoxicity of carbon nanotubes.

Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H.

Chem Cent J. 2013 Sep 13;7(1):154. doi: 10.1186/1752-153X-7-154.

12.

Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes.

Wang J, Li Z, Li S, Qi W, Liu P, Liu F, Ye Y, Wu L, Wang L, Wu W.

PLoS One. 2013 Aug 29;8(8):e72475. doi: 10.1371/journal.pone.0072475.

13.

Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia).

Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK.

BMC Biotechnol. 2013 Apr 26;13:37. doi: 10.1186/1472-6750-13-37.

14.

Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length.

Wang Y, Kim JH, Baek JB, Miller GW, Pennell KD.

Water Res. 2012 Sep 15;46(14):4521-31. doi: 10.1016/j.watres.2012.05.036.

15.

Detection of carbon nanotubes in environmental matrices using programmed thermal analysis.

Doudrick K, Herckes P, Westerhoff P.

Environ Sci Technol. 2012 Nov 20;46(22):12246-53. doi: 10.1021/es300804f.

16.

Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter.

Kim KT, Jang MH, Kim JY, Xing B, Tanguay RL, Lee BG, Kim SD.

Sci Total Environ. 2012 Jun 1;426:423-9. doi: 10.1016/j.scitotenv.2012.03.050.

17.

Interaction of nanoparticles with edible plants and their possible implications in the food chain.

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL.

J Agric Food Chem. 2011 Apr 27;59(8):3485-98. doi: 10.1021/jf104517j. Review.

18.
19.

Enzymatic degradation of multiwalled carbon nanotubes.

Zhao Y, Allen BL, Star A.

J Phys Chem A. 2011 Sep 1;115(34):9536-44. doi: 10.1021/jp112324d.

20.

Evaluation of extraction methods for quantification of aqueous fullerenes in urine.

Benn TM, Pycke BF, Herckes P, Westerhoff P, Halden RU.

Anal Bioanal Chem. 2011 Feb;399(4):1631-9. doi: 10.1007/s00216-010-4465-2.

Supplemental Content

Support Center