Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria.

Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, Lee K, Greer CW.

ISME J. 2017 Dec;11(12):2793-2808. doi: 10.1038/ismej.2017.129. Epub 2017 Aug 11.

PMID:
28800137
2.

Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

Liu J, Bacosa HP, Liu Z.

Front Microbiol. 2017 Jan 10;7:2131. doi: 10.3389/fmicb.2016.02131. eCollection 2016.

3.

Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout.

Yang T, Speare K, McKay L, MacGregor BJ, Joye SB, Teske A.

Front Microbiol. 2016 Sep 13;7:1384. doi: 10.3389/fmicb.2016.01384. eCollection 2016.

4.

Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review.

Ghosal D, Ghosh S, Dutta TK, Ahn Y.

Front Microbiol. 2016 Aug 31;7:1369. doi: 10.3389/fmicb.2016.01369. eCollection 2016. Review. Erratum in: Front Microbiol. 2016 Nov 15;7:1837.

5.

Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity.

Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott MF, Kalinowski J, Rückert C, Wentzel A, Lale R.

BMC Genomics. 2016 Feb 16;17:117. doi: 10.1186/s12864-016-2445-4.

6.

Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

Bacosa HP, Liu Z, Erdner DL.

Front Microbiol. 2015 Dec 1;6:1325. doi: 10.3389/fmicb.2015.01325. eCollection 2015.

7.

Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater.

Brakstad OG, Throne-Holst M, Netzer R, Stoeckel DM, Atlas RM.

Microb Biotechnol. 2015 Nov;8(6):989-98. doi: 10.1111/1751-7915.12303. Epub 2015 Jul 16.

8.

Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ.

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13591-6. doi: 10.1073/pnas.1507274112. Epub 2015 Oct 5.

9.

Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea.

Chronopoulou PM, Sanni GO, Silas-Olu DI, van der Meer JR, Timmis KN, Brussaard CP, McGenity TJ.

Microb Biotechnol. 2015 May;8(3):434-47. doi: 10.1111/1751-7915.12176. Epub 2014 Sep 24.

10.

Complete genome sequence of Thalassolituus oleivorans R6-15, an obligate hydrocarbonoclastic marine bacterium from the Arctic Ocean.

Dong C, Chen X, Xie Y, Lai Q, Shao Z.

Stand Genomic Sci. 2014 Mar 1;9(3):893-901. doi: 10.4056/sigs.5229330. eCollection 2014 Jun 15.

11.

Multilocus sequence analysis for the assessment of phylogenetic diversity and biogeography in hyphomonas bacteria from diverse marine environments.

Li C, Lai Q, Li G, Liu Y, Sun F, Shao Z.

PLoS One. 2014 Jul 14;9(7):e101394. doi: 10.1371/journal.pone.0101394. eCollection 2014.

12.

The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill.

Kappell AD, Wei Y, Newton RJ, Van Nostrand JD, Zhou J, McLellan SL, Hristova KR.

Front Microbiol. 2014 May 9;5:205. doi: 10.3389/fmicb.2014.00205. eCollection 2014.

13.

Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments.

Singh AK, Sherry A, Gray ND, Jones DM, Bowler BF, Head IM.

Front Microbiol. 2014 Apr 11;5:160. doi: 10.3389/fmicb.2014.00160. eCollection 2014.

14.

DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation.

Mishamandani S, Gutierrez T, Aitken MD.

Front Microbiol. 2014 Feb 27;5:76. doi: 10.3389/fmicb.2014.00076. eCollection 2014.

15.

Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

Patil SS, Adetutu EM, Rochow J, Mitchell JG, Ball AS.

Microb Biotechnol. 2014 Jan;7(1):54-63. doi: 10.1111/1751-7915.12089. Epub 2013 Oct 1.

16.

Shifts in the microbial community composition of Gulf Coast beaches following beach oiling.

Newton RJ, Huse SM, Morrison HG, Peake CS, Sogin ML, McLellan SL.

PLoS One. 2013 Sep 10;8(9):e74265. doi: 10.1371/journal.pone.0074265. eCollection 2013. Erratum in: PLoS One. 2014;9(4):e94671.

17.

Enzymes and genes involved in aerobic alkane degradation.

Wang W, Shao Z.

Front Microbiol. 2013 May 28;4:116. doi: 10.3389/fmicb.2013.00116. eCollection 2013.

18.

Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill.

Liu Z, Liu J.

Microbiologyopen. 2013 Jun;2(3):492-504. doi: 10.1002/mbo3.89. Epub 2013 Apr 9. Erratum in: Microbiologyopen. 2013 Aug;2(4):715.

19.

Marine crude-oil biodegradation: a central role for interspecies interactions.

McGenity TJ, Folwell BD, McKew BA, Sanni GO.

Aquat Biosyst. 2012 May 16;8(1):10. doi: 10.1186/2046-9063-8-10.

20.

Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats.

Coulon F, Chronopoulou PM, Fahy A, Païssé S, Goñi-Urriza M, Peperzak L, Acuña Alvarez L, McKew BA, Brussaard CP, Underwood GJ, Timmis KN, Duran R, McGenity TJ.

Appl Environ Microbiol. 2012 May;78(10):3638-48. doi: 10.1128/AEM.00072-12. Epub 2012 Mar 9.

Supplemental Content

Support Center