Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.
2.

The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions.

Beckmann BM, Castello A, Medenbach J.

Pflugers Arch. 2016 Jun;468(6):1029-40. doi: 10.1007/s00424-016-1819-4. Epub 2016 May 10. Review.

3.

Homoiterons and expansion in ribosomal RNAs.

Parker MS, Sallee FR, Park EA, Parker SL.

FEBS Open Bio. 2015 Oct 23;5:864-76. doi: 10.1016/j.fob.2015.10.005. eCollection 2015.

4.

Structure of mammalian eIF3 in the context of the 43S preinitiation complex.

des Georges A, Dhote V, Kuhn L, Hellen CU, Pestova TV, Frank J, Hashem Y.

Nature. 2015 Sep 24;525(7570):491-5. doi: 10.1038/nature14891. Epub 2015 Sep 7.

5.

The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes.

Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M.

Nucleic Acids Res. 2015 Jul 27;43(13):6222-35. doi: 10.1093/nar/gkv564. Epub 2015 Jun 19.

6.

The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis.

Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK, Freire ER, Reis CR, de Melo Neto OP.

BMC Genomics. 2014 Dec 23;15:1175. doi: 10.1186/1471-2164-15-1175.

7.

Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3).

Yue MM, Lv K, Meredith SC, Martindale JL, Gorospe M, Schuger L.

J Biol Chem. 2014 Dec 5;289(49):33971-83. doi: 10.1074/jbc.M114.609495. Epub 2014 Oct 21.

8.

Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex.

Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CH, Cimermančič P, Boehringer D, Sali A, Aebersold R, Ban N.

Cell. 2014 Aug 28;158(5):1123-35. doi: 10.1016/j.cell.2014.07.044. Erratum in: Cell. 2014 Nov 20;159(5):1227.

9.

Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells.

Wagner S, Herrmannová A, Malík R, Peclinovská L, Valášek LS.

Mol Cell Biol. 2014 Aug;34(16):3041-52. doi: 10.1128/MCB.00663-14. Epub 2014 Jun 9.

10.

Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes.

Khoshnevis S, Gunišová S, Vlčková V, Kouba T, Neumann P, Beznosková P, Ficner R, Valášek LS.

Nucleic Acids Res. 2014 Apr;42(6):4123-39. doi: 10.1093/nar/gkt1369. Epub 2014 Jan 13.

11.

Examining weak protein-protein interactions in start codon recognition via NMR spectroscopy.

Luna RE, Akabayov SR, Ziarek JJ, Wagner G.

FEBS J. 2014 Apr;281(8):1965-73. doi: 10.1111/febs.12667. Epub 2014 Jan 2. Review.

12.

Spectrin domain of eukaryotic initiation factor 3a is the docking site for formation of the a:b:i:g subcomplex.

Dong Z, Qi J, Peng H, Liu J, Zhang JT.

J Biol Chem. 2013 Sep 27;288(39):27951-9. doi: 10.1074/jbc.M113.483164. Epub 2013 Aug 6.

13.

Architecture of human translation initiation factor 3.

Querol-Audi J, Sun C, Vogan JM, Smith MD, Gu Y, Cate JH, Nogales E.

Structure. 2013 Jun 4;21(6):920-8. doi: 10.1016/j.str.2013.04.002. Epub 2013 Apr 25.

14.

Evolutionary conservation of the ribosomal biogenesis factor Rbm19/Mrd1: implications for function.

Kallberg Y, Segerstolpe Å, Lackmann F, Persson B, Wieslander L.

PLoS One. 2012;7(9):e43786. doi: 10.1371/journal.pone.0043786. Epub 2012 Sep 12.

15.
16.

Alternative splicing produces structural and functional changes in CUGBP2.

Suzuki H, Takeuchi M, Sugiyama A, Alam AK, Vu LT, Sekiyama Y, Dam HC, Ohki SY, Tsukahara T.

BMC Biochem. 2012 Mar 20;13:6. doi: 10.1186/1471-2091-13-6.

17.

Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly.

Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F, Wagner S, Dányi I, Lukavsky PJ, Valásek LS.

Nucleic Acids Res. 2012 Mar;40(5):2294-311. doi: 10.1093/nar/gkr765. Epub 2011 Nov 15.

18.

Molecular mechanism of scanning and start codon selection in eukaryotes.

Hinnebusch AG.

Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents. doi: 10.1128/MMBR.00008-11. Review.

19.

Crystal structure of the RNA recognition motif of yeast translation initiation factor eIF3b reveals differences to human eIF3b.

Khoshnevis S, Neumann P, Ficner R.

PLoS One. 2010 Sep 16;5(9). pii: e12784. doi: 10.1371/journal.pone.0012784.

20.

The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection.

Elantak L, Wagner S, Herrmannová A, Karásková M, Rutkai E, Lukavsky PJ, Valásek L.

J Mol Biol. 2010 Mar 5;396(4):1097-116. doi: 10.1016/j.jmb.2009.12.047. Epub 2010 Jan 11.

Supplemental Content

Support Center