Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.

Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B, Frank S, Angelini C, Furling D, Rüegg MA, Sinnreich M, Castets P.

J Clin Invest. 2017 Feb 1;127(2):549-563. doi: 10.1172/JCI89616. Epub 2017 Jan 9.

2.

Trojan triplets: RNA-based pathomechanisms for muscle dysfunction in Huntington's disease.

Skov M, Dirksen RT.

J Gen Physiol. 2017 Jan;149(1):49-53. doi: 10.1085/jgp.201611728. Epub 2016 Dec 9. No abstract available.

PMID:
27940949
3.

Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice.

Carrell ST, Carrell EM, Auerbach D, Pandey SK, Bennett CF, Dirksen RT, Thornton CA.

Hum Mol Genet. 2016 Oct 1;25(19):4328-4338. doi: 10.1093/hmg/ddw266. Epub 2016 Aug 13.

PMID:
27522499
4.

Alternating bipolar field stimulation identifies muscle fibers with defective excitability but maintained local Ca(2+) signals and contraction.

Hernández-Ochoa EO, Vanegas C, Iyer SR, Lovering RM, Schneider MF.

Skelet Muscle. 2016 Feb 5;6:6. doi: 10.1186/s13395-016-0076-8. eCollection 2016.

5.

Taurine: the appeal of a safe amino acid for skeletal muscle disorders.

De Luca A, Pierno S, Camerino DC.

J Transl Med. 2015 Jul 25;13:243. doi: 10.1186/s12967-015-0610-1. Review.

6.

ClC-1 chloride channels: state-of-the-art research and future challenges.

Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC.

Front Cell Neurosci. 2015 Apr 27;9:156. doi: 10.3389/fncel.2015.00156. eCollection 2015. Review.

7.

Channelopathies of skeletal muscle excitability.

Cannon SC.

Compr Physiol. 2015 Apr;5(2):761-90. doi: 10.1002/cphy.c140062. Review.

8.

Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies.

Bachinski LL, Baggerly KA, Neubauer VL, Nixon TJ, Raheem O, Sirito M, Unruh AK, Zhang J, Nagarajan L, Timchenko LT, Bassez G, Eymard B, Gamez J, Ashizawa T, Mendell JR, Udd B, Krahe R.

Neuromuscul Disord. 2014 Mar;24(3):227-40. doi: 10.1016/j.nmd.2013.11.001. Epub 2013 Nov 15.

9.

Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction.

Waters CW, Varuzhanyan G, Talmadge RJ, Voss AA.

Proc Natl Acad Sci U S A. 2013 May 28;110(22):9160-5. doi: 10.1073/pnas.1220068110. Epub 2013 May 13.

10.

Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour.

Hernández-Hernández O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, Saenger S, Marciniak E, Obriot H, Chevarin C, Nicole A, Revillod L, Charizanis K, Lee KY, Suzuki Y, Kimura T, Matsuura T, Cisneros B, Swanson MS, Trovero F, Buisson B, Bizot JC, Hamon M, Humez S, Bassez G, Metzger F, Buée L, Munnich A, Sergeant N, Gourdon G, Gomes-Pereira M.

Brain. 2013 Mar;136(Pt 3):957-70. doi: 10.1093/brain/aws367. Epub 2013 Feb 11.

11.

Antisense oligonucleotides: rising stars in eliminating RNA toxicity in myotonic dystrophy.

Gao Z, Cooper TA.

Hum Gene Ther. 2013 May;24(5):499-507. doi: 10.1089/hum.2012.212. Epub 2013 Jan 30. Review.

12.

Age-dependent chloride channel expression in skeletal muscle fibres of normal and HSA(LR) myotonic mice.

DiFranco M, Yu C, Quiñonez M, Vergara JL.

J Physiol. 2013 Mar 1;591(5):1347-71. doi: 10.1113/jphysiol.2012.246546. Epub 2012 Dec 17.

13.

Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel.

Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA.

Hum Mol Genet. 2012 Mar 15;21(6):1312-24. doi: 10.1093/hmg/ddr568. Epub 2011 Dec 2.

14.

Myotonic dystrophy mouse models: towards rational therapy development.

Gomes-Pereira M, Cooper TA, Gourdon G.

Trends Mol Med. 2011 Sep;17(9):506-17. doi: 10.1016/j.molmed.2011.05.004. Epub 2011 Jul 2. Review.

15.

Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle.

Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD.

J Clin Invest. 2011 Mar;121(3):1044-52. doi: 10.1172/JCI43844.

16.

Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle.

Lueck JD, Rossi AE, Thornton CA, Campbell KP, Dirksen RT.

J Gen Physiol. 2010 Dec;136(6):597-613. doi: 10.1085/jgp.201010526. Epub 2010 Nov 15.

17.

CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1.

Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA.

Hum Mol Genet. 2010 Sep 15;19(18):3614-22. doi: 10.1093/hmg/ddq277. Epub 2010 Jul 5.

18.

Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy.

Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP, Hall MP, Shiue L, Swanson MS, Thornton CA, Ares M Jr.

Nat Struct Mol Biol. 2010 Feb;17(2):187-93. doi: 10.1038/nsmb.1720. Epub 2010 Jan 24.

19.

Sarcolemmal ATP-sensitive K(+) channels control energy expenditure determining body weight.

Alekseev AE, Reyes S, Yamada S, Hodgson-Zingman DM, Sattiraju S, Zhu Z, Sierra A, Gerbin M, Coetzee WA, Goldhamer DJ, Terzic A, Zingman LV.

Cell Metab. 2010 Jan;11(1):58-69. doi: 10.1016/j.cmet.2009.11.009.

20.

MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1.

Kino Y, Washizu C, Oma Y, Onishi H, Nezu Y, Sasagawa N, Nukina N, Ishiura S.

Nucleic Acids Res. 2009 Oct;37(19):6477-90. doi: 10.1093/nar/gkp681. Epub 2009 Aug 31.

Supplemental Content

Support Center