Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors.

Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A.

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2293-E2302. doi: 10.1073/pnas.1612906114. Epub 2017 Mar 6.

PMID:
28265064
2.

A cost-effective fluorescence mini-microscope for biomedical applications.

Zhang YS, Ribas J, Nadhman A, Aleman J, Selimović Š, Lesher-Perez SC, Wang T, Manoharan V, Shin SR, Damilano A, Annabi N, Dokmeci MR, Takayama S, Khademhosseini A.

Lab Chip. 2015;15(18):3661-9. doi: 10.1039/c5lc00666j.

3.

FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy.

De Los Santos C, Chang CW, Mycek MA, Cardullo RA.

Mol Reprod Dev. 2015 Jul-Aug;82(7-8):587-604. doi: 10.1002/mrd.22501. Epub 2015 May 25. Review.

4.

A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells.

Alrifaiy A, Borg J, Lindahl OA, Ramser K.

Biomed Eng Online. 2015 Apr 18;14:36. doi: 10.1186/s12938-015-0024-6.

5.

Biomimetic tumor microenvironment on a microfluidic platform.

Ma H, Xu H, Qin J.

Biomicrofluidics. 2013 Jan 7;7(1):11501. doi: 10.1063/1.4774070. Review.

6.

Oxygen levels in thermoplastic microfluidic devices during cell culture.

Ochs CJ, Kasuya J, Pavesi A, Kamm RD.

Lab Chip. 2014 Feb 7;14(3):459-62. doi: 10.1039/c3lc51160j.

7.

3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation.

Choi H, Tzeranis DS, Cha JW, Clémenceau P, de Jong SJ, van Geest LK, Moon JH, Yannas IV, So PT.

Opt Express. 2012 Nov 19;20(24):26219-35. doi: 10.1364/OE.20.026219.

8.

Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy.

Chang CW, Mycek MA.

J Biophotonics. 2012 May;5(5-6):449-57. doi: 10.1002/jbio.201100137. Epub 2012 Mar 13.

9.

Optical oxygen sensors for applications in microfluidic cell culture.

Grist SM, Chrostowski L, Cheung KC.

Sensors (Basel). 2010;10(10):9286-316. doi: 10.3390/s101009286. Epub 2010 Oct 15. Review.

10.

Enhancing precision in time-domain fluorescence lifetime imaging.

Chang CW, Mycek MA.

J Biomed Opt. 2010 Sep-Oct;15(5):056013. doi: 10.1117/1.3494566.

11.

Microimaging of oxygen concentration near live photosynthetic cells by electron spin resonance.

Halevy R, Tormyshev V, Blank A.

Biophys J. 2010 Aug 4;99(3):971-8. doi: 10.1016/j.bpj.2010.05.002.

12.

Multicolor single-molecule FRET to explore protein folding and binding.

Gambin Y, Deniz AA.

Mol Biosyst. 2010 Sep;6(9):1540-7. doi: 10.1039/c003024d. Epub 2010 Jul 2. Review.

13.

Fluorescence lifetime measurements and biological imaging.

Berezin MY, Achilefu S.

Chem Rev. 2010 May 12;110(5):2641-84. doi: 10.1021/cr900343z. Review. No abstract available.

14.

Microfluidic device for single-molecule experiments with enhanced photostability.

Lemke EA, Gambin Y, Vandelinder V, Brustad EM, Liu HW, Schultz PG, Groisman A, Deniz AA.

J Am Chem Soc. 2009 Sep 30;131(38):13610-2. doi: 10.1021/ja9027023.

Supplemental Content

Support Center