Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 42

1.

HIV-1 Reverse Transcriptase Polymerase and RNase H (Ribonuclease H) Active Sites Work Simultaneously and Independently.

Li A, Li J, Johnson KA.

J Biol Chem. 2016 Dec 16;291(51):26566-26585. Epub 2016 Oct 24.

PMID:
27777303
2.

APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

Nowarski R, Prabhu P, Kenig E, Smith Y, Britan-Rosich E, Kotler M.

J Mol Biol. 2014 Jul 29;426(15):2840-53. doi: 10.1016/j.jmb.2014.05.012. Epub 2014 May 21.

3.

Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis.

Álvarez M, Barrioluengo V, Afonso-Lehmann RN, Menéndez-Arias L.

Nucleic Acids Res. 2013 Apr;41(8):4601-12. doi: 10.1093/nar/gkt109. Epub 2013 Feb 26.

4.

Mechanism of HIV reverse transcriptase inhibition by zinc: formation of a highly stable enzyme-(primer-template) complex with profoundly diminished catalytic activity.

Fenstermacher KJ, DeStefano JJ.

J Biol Chem. 2011 Nov 25;286(47):40433-42. doi: 10.1074/jbc.M111.289850. Epub 2011 Sep 26.

5.

Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1.

Piekna-Przybylska D, Bambara RA.

RNA Biol. 2011 Mar-Apr;8(2):230-6. Epub 2011 Mar 1. Review.

6.

Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription.

Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K.

RNA Biol. 2010 Nov-Dec;7(6):754-74. Epub 2010 Nov 1. Review.

8.

Factors that determine the efficiency of HIV-1 strand transfer initiated at a specific site.

Rigby ST, Van Nostrand KP, Rose AE, Gorelick RJ, Mathews DH, Bambara RA.

J Mol Biol. 2009 Dec 11;394(4):694-707. doi: 10.1016/j.jmb.2009.10.036. Epub 2009 Oct 21.

9.

A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

Shen W, Gao L, Balakrishnan M, Bambara RA.

J Biol Chem. 2009 Dec 4;284(49):33883-93. doi: 10.1074/jbc.M109.055368. Epub 2009 Oct 12.

10.
11.

The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

Onafuwa-Nuga A, Telesnitsky A.

Microbiol Mol Biol Rev. 2009 Sep;73(3):451-80, Table of Contents. doi: 10.1128/MMBR.00012-09. Review.

12.

Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.

Götte M, Rausch JW, Marchand B, Sarafianos S, Le Grice SF.

Biochim Biophys Acta. 2010 May;1804(5):1202-12. doi: 10.1016/j.bbapap.2009.07.020. Epub 2009 Aug 7. Review.

13.

Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer.

Arezi B, Hogrefe H.

Nucleic Acids Res. 2009 Feb;37(2):473-81. doi: 10.1093/nar/gkn952. Epub 2008 Dec 4.

14.

RNase H activity: structure, specificity, and function in reverse transcription.

Schultz SJ, Champoux JJ.

Virus Res. 2008 Jun;134(1-2):86-103. doi: 10.1016/j.virusres.2007.12.007. Epub 2008 Feb 7. Review.

16.

Sequence, distance, and accessibility are determinants of 5'-end-directed cleavages by retroviral RNases H.

Schultz SJ, Zhang M, Champoux JJ.

J Biol Chem. 2006 Jan 27;281(4):1943-55. Epub 2005 Nov 22.

17.

Processive phosphorylation of alternative splicing factor/splicing factor 2.

Aubol BE, Chakrabarti S, Ngo J, Shaffer J, Nolen B, Fu XD, Ghosh G, Adams JA.

Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12601-6. Epub 2003 Oct 10.

18.
19.

The role of template-primer in protection of reverse transcriptase from thermal inactivation.

Gerard GF, Potter RJ, Smith MD, Rosenthal K, Dhariwal G, Lee J, Chatterjee DK.

Nucleic Acids Res. 2002 Jul 15;30(14):3118-29.

20.

Supplemental Content

Support Center