Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics.

Habringer S, Lapa C, Herhaus P, Schottelius M, Istvanffy R, Steiger K, Slotta-Huspenina J, Schirbel A, Hänscheid H, Kircher S, Buck AK, Götze K, Vick B, Jeremias I, Schwaiger M, Peschel C, Oostendorp R, Wester HJ, Grigoleit GU, Keller U.

Theranostics. 2018 Jan 1;8(2):369-383. doi: 10.7150/thno.21397. eCollection 2018.

2.

B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy.

Zhang X, Rastogi P, Shah B, Zhang L.

Oncotarget. 2017 Jul 15;8(39):66728-66741. doi: 10.18632/oncotarget.19271. eCollection 2017 Sep 12. Review.

3.

Impact of Aberrant Myeloid Antigen Expression on Outcomes of Patients with T-cell Acute Lymphoblastic Leukemia.

Al-Zaabi M, Al-Khabori M, Fawaz N, Al-Lamki S, Al-Riyami A, Al-Huneini M, Al-Muslahi M, Alkindi S.

Oman Med J. 2017 May;32(3):189-193. doi: 10.5001/omj.2017.36.

4.

Impact of Initial CSF Findings on Outcome Among Patients With National Cancer Institute Standard- and High-Risk B-Cell Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group.

Winick N, Devidas M, Chen S, Maloney K, Larsen E, Mattano L, Borowitz MJ, Carroll A, Gastier-Foster JM, Heerema NA, Willman C, Wood B, Loh ML, Raetz E, Hunger SP, Carroll WL.

J Clin Oncol. 2017 Aug 1;35(22):2527-2534. doi: 10.1200/JCO.2016.71.4774. Epub 2017 May 23.

PMID:
28535084
5.

Brain structure, working memory and response inhibition in childhood leukemia survivors.

van der Plas E, Schachar RJ, Hitzler J, Crosbie J, Guger SL, Spiegler BJ, Ito S, Nieman BJ.

Brain Behav. 2016 Dec 29;7(2):e00621. doi: 10.1002/brb3.621. eCollection 2017 Feb.

6.

Flow cytometric detection of minimal residual disease in B-lineage acute lymphoblastic leukemia by using "MRD lite" panel.

Chatterjee T, Somasundaram V.

Med J Armed Forces India. 2017 Jan;73(1):54-57. doi: 10.1016/j.mjafi.2016.10.006. Epub 2016 Dec 16.

7.

MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation.

Godfrey L, Kerry J, Thorne R, Repapi E, Davies JO, Tapia M, Ballabio E, Hughes JR, Geng H, Konopleva M, Milne TA.

Exp Hematol. 2017 Mar;47:64-75. doi: 10.1016/j.exphem.2016.11.003. Epub 2016 Nov 14.

8.

Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia.

Tasian SK, Teachey DT, Li Y, Shen F, Harvey RC, Chen IM, Ryan T, Vincent TL, Willman CL, Perl AE, Hunger SP, Loh ML, Carroll M, Grupp SA.

Blood. 2017 Jan 12;129(2):177-187. doi: 10.1182/blood-2016-05-707653. Epub 2016 Oct 24.

9.

Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia.

Salina TD, Ferreira YA, Alves EB, Ferreira CM, De Paula EV, Mira MT, Passos Lda M.

Sci Rep. 2016 Aug 16;6:31179. doi: 10.1038/srep31179.

10.

Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia.

Khaw SL, Suryani S, Evans K, Richmond J, Robbins A, Kurmasheva RT, Billups CA, Erickson SW, Guo Y, Houghton PJ, Smith MA, Carol H, Roberts AW, Huang DC, Lock RB.

Blood. 2016 Sep 8;128(10):1382-95. doi: 10.1182/blood-2016-03-707414. Epub 2016 Jun 24.

11.

The Philadelphia chromosome in leukemogenesis.

Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, Liu Q.

Chin J Cancer. 2016 May 27;35:48. doi: 10.1186/s40880-016-0108-0. Review.

12.

Minimal Residual Disease Evaluation in Childhood Acute Lymphoblastic Leukemia: An Economic Analysis.

Health Quality Ontario.

Ont Health Technol Assess Ser. 2016 Mar 8;16(8):1-83. eCollection 2016. Review.

13.

LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors.

Cheng Y, Chikwava K, Wu C, Zhang H, Bhagat A, Pei D, Choi JK, Tong W.

J Clin Invest. 2016 Apr 1;126(4):1267-81. doi: 10.1172/JCI81468. Epub 2016 Mar 14.

14.
15.

Phenotype of NK Cells Determined on the Basis of Selected Immunological Parameters in Children Treated due to Acute Lymphoblastic Leukemia.

Koltan S, Debski R, Koltan A, Grzesk E, Tejza B, Eljaszewicz A, Gackowska L, Kubicka M, Kolodziej B, Kurylo-Rafinska B, Kubiszewska I, Wiese M, Januszewska M, Michalkiewicz J, Wysocki M, Styczynski J, Grzesk G.

Medicine (Baltimore). 2015 Dec;94(52):e2369. doi: 10.1097/MD.0000000000002369.

16.

Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia.

Shalabi H, Angiolillo A, Fry TJ.

Front Pediatr. 2015 Oct 1;3:80. doi: 10.3389/fped.2015.00080. eCollection 2015. Review.

17.
18.

Feasibility Study of a Novel Experimental Induction Protocol Combining B43-PAP (Anti-CD19) Immunotoxin With Standard Induction Chemotherapy in Children and Adolescents With Relapsed B-Lineage ALL: A Report From the Children's Oncology Group.

Meany HJ, Seibel NL, Krailo M, Villaluna D, Chen Z, Gaynon P, Neglia JP, Park JR, Hutchinson R, Sato JK, Wells RJ, Woods WG, Reaman G.

J Immunother. 2015 Sep;38(7):299-305. doi: 10.1097/CJI.0000000000000088.

19.
20.

Prediction of outcomes by early treatment responses in childhood T-cell acute lymphoblastic leukemia: a retrospective study in China.

Wei W, Chen X, Zou Y, Chang L, An W, Wan Y, Liu T, Yang W, Chen Y, Guo Y, Zhu X.

BMC Pediatr. 2015 Jul 15;15:80. doi: 10.1186/s12887-015-0390-z.

Supplemental Content

Support Center