Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 42

1.

Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1.

Briones R, Weichbrodt C, Paltrinieri L, Mey I, Villinger S, Giller K, Lange A, Zweckstetter M, Griesinger C, Becker S, Steinem C, de Groot BL.

Biophys J. 2016 Sep 20;111(6):1223-34. doi: 10.1016/j.bpj.2016.08.007.

2.

Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy.

Yu X, Xu Y, Zhang S, Sun J, Liu P, Xiao L, Tang Y, Liu L, Yao P.

Nutrients. 2016 Jan 5;8(1). pii: E27. doi: 10.3390/nu8010027.

3.

N-helix and Cysteines Inter-regulate Human Mitochondrial VDAC-2 Function and Biochemistry.

Maurya SR, Mahalakshmi R.

J Biol Chem. 2015 Dec 18;290(51):30240-52. doi: 10.1074/jbc.M115.693978.

4.

Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40.

Kuszak AJ, Jacobs D, Gurnev PA, Shiota T, Louis JM, Lithgow T, Bezrukov SM, Rostovtseva TK, Buchanan SK.

J Biol Chem. 2015 Oct 23;290(43):26204-17. doi: 10.1074/jbc.M115.642173.

5.

Conductance hysteresis in the voltage-dependent anion channel.

Rappaport SM, Teijido O, Hoogerheide DP, Rostovtseva TK, Berezhkovskii AM, Bezrukov SM.

Eur Biophys J. 2015 Sep;44(6):465-72. doi: 10.1007/s00249-015-1049-2.

6.

α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease.

Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, Lee JC, Bezrukov SM.

J Biol Chem. 2015 Jul 24;290(30):18467-77. doi: 10.1074/jbc.M115.641746.

7.

Magic angle spinning nuclear magnetic resonance characterization of voltage-dependent anion channel gating in two-dimensional lipid crystalline bilayers.

Eddy MT, Andreas L, Teijido O, Su Y, Clark L, Noskov SY, Wagner G, Rostovtseva TK, Griffin RG.

Biochemistry. 2015 Feb 3;54(4):994-1005. doi: 10.1021/bi501260r.

8.

Sites and functional consequence of VDAC-alkylphenol anesthetic interactions.

Weiser BP, Bu W, Wong D, Eckenhoff RG.

FEBS Lett. 2014 Nov 28;588(23):4398-403. doi: 10.1016/j.febslet.2014.10.009.

9.

Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs.

Salinas T, El Farouk-Ameqrane S, Ubrig E, Sauter C, Duchêne AM, Maréchal-Drouard L.

Nucleic Acids Res. 2014 Sep;42(15):9937-48. doi: 10.1093/nar/gku728.

10.

Computational investigation of cholesterol binding sites on mitochondrial VDAC.

Weiser BP, Salari R, Eckenhoff RG, Brannigan G.

J Phys Chem B. 2014 Aug 21;118(33):9852-60. doi: 10.1021/jp504516a.

11.

Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges.

Teijido O, Rappaport SM, Chamberlin A, Noskov SY, Aguilella VM, Rostovtseva TK, Bezrukov SM.

J Biol Chem. 2014 Aug 22;289(34):23670-82. doi: 10.1074/jbc.M114.576314.

12.

Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2.

Maurya SR, Mahalakshmi R.

PLoS One. 2014 Jan 29;9(1):e87701. doi: 10.1371/journal.pone.0087701.

13.

Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling.

O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS.

Antioxid Redox Signal. 2014 Aug 20;21(6):987-1006. doi: 10.1089/ars.2013.5681. Review.

14.

Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells.

Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein-Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayır H, Kagan VE.

Nat Cell Biol. 2013 Oct;15(10):1197-205. doi: 10.1038/ncb2837.

15.

Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin.

Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM, Bezrukov SM, Rostovtseva TK, Lemasters JJ.

J Biol Chem. 2013 Apr 26;288(17):11920-9. doi: 10.1074/jbc.M112.433847.

16.

Does the lipid environment impact the open-state conductance of an engineered β-barrel protein nanopore?

Tomita N, Mohammad MM, Niedzwiecki DJ, Ohta M, Movileanu L.

Biochim Biophys Acta. 2013 Mar;1828(3):1057-65. doi: 10.1016/j.bbamem.2012.12.003.

17.

Flexibility of the N-terminal mVDAC1 segment controls the channel's gating behavior.

Mertins B, Psakis G, Grosse W, Back KC, Salisowski A, Reiss P, Koert U, Essen LO.

PLoS One. 2012;7(10):e47938. doi: 10.1371/journal.pone.0047938.

18.

Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.

Portella G, Polupanow T, Zocher F, Boytsov DA, Pohl P, Diederichsen U, de Groot BL.

Biophys J. 2012 Oct 17;103(8):1698-705. doi: 10.1016/j.bpj.2012.08.059.

19.

Obstructing toxin pathways by targeted pore blockage.

Nestorovich EM, Bezrukov SM.

Chem Rev. 2012 Dec 12;112(12):6388-430. doi: 10.1021/cr300141q. Review. No abstract available.

20.

Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury.

Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA, Tyurina YY, Fink B, Manole MD, Puccio AM, Okonkwo DO, Cheng JP, Alexander H, Clark RS, Kochanek PM, Wipf P, Kagan VE, Bayır H.

Nat Neurosci. 2012 Oct;15(10):1407-13. doi: 10.1038/nn.3195.

Supplemental Content

Support Center