Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 69

1.

Calcium-driven DNA synthesis by a high-fidelity DNA polymerase.

Ralec C, Henry E, Lemor M, Killelea T, Henneke G.

Nucleic Acids Res. 2017 Dec 1;45(21):12425-12440. doi: 10.1093/nar/gkx927.

2.

High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.

Baños-Mateos S, van Roon AM, Lang UF, Maslen SL, Skehel JM, Lamers MH.

Nat Commun. 2017 Oct 11;8(1):855. doi: 10.1038/s41467-017-00886-w.

3.

DNA Replication in Mycobacterium tuberculosis.

Ditse Z, Lamers MH, Warner DF.

Microbiol Spectr. 2017 Mar;5(2). doi: 10.1128/microbiolspec.TBTB2-0027-2016. Review.

4.

Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

Murison DA, Ollivierre JN, Huang Q, Budil DE, Beuning PJ.

PLoS One. 2017 Mar 8;12(3):e0173388. doi: 10.1371/journal.pone.0173388. eCollection 2017.

5.

Bacterial and Eukaryotic Replisome Machines.

Yao N, O'Donnell M.

JSM Biochem Mol Biol. 2016;3(1). pii: 1013. Epub 2016 May 30.

6.

Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

Sauguet L, Raia P, Henneke G, Delarue M.

Nat Commun. 2016 Aug 22;7:12227. doi: 10.1038/ncomms12227. [Epub ahead of print]

7.

Evolution of replication machines.

Yao NY, O'Donnell ME.

Crit Rev Biochem Mol Biol. 2016 May-Jun;51(3):135-49. doi: 10.3109/10409238.2015.1125845. Epub 2015 Dec 20. Review.

8.

The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity.

Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L.

Sci Rep. 2016 Jan 29;6:18418. doi: 10.1038/srep18418.

9.

cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ.

Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH.

Elife. 2015 Oct 24;4. pii: e11134. doi: 10.7554/eLife.11134.

10.

Replisome Dynamics during Chromosome Duplication.

Kurth I, O'Donnell M.

EcoSal Plus. 2009 Aug;3(2). doi: 10.1128/ecosalplus.4.4.2.

11.

DNA Polymerase α Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection.

Lindow JC, Dohrmann PR, McHenry CS.

J Biol Chem. 2015 Jul 3;290(27):16851-60. doi: 10.1074/jbc.M115.661090. Epub 2015 May 18.

12.

DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader.

Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER, Gawande R, Coscolla M, Gagneux S, Fortune SM, Lamers MH.

Nat Genet. 2015 Jun;47(6):677-81. doi: 10.1038/ng.3269. Epub 2015 Apr 20.

13.

In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv).

Jadaun A, Sudhakar D R, Subbarao N, Dixit A.

PLoS One. 2015 Mar 26;10(3):e0119760. doi: 10.1371/journal.pone.0119760. eCollection 2015. Erratum in: PLoS One. 2015;10(5):e0128613.

14.

The case for an early biological origin of DNA.

Poole AM, Horinouchi N, Catchpole RJ, Si D, Hibi M, Tanaka K, Ogawa J.

J Mol Evol. 2014 Dec;79(5-6):204-12. doi: 10.1007/s00239-014-9656-6. Epub 2014 Nov 26.

15.

Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

Matsui I, Matsui E, Yamasaki K, Yokoyama H.

Life (Basel). 2013 Jul 5;3(3):375-85. doi: 10.3390/life3030375. Review.

16.

A bioenergetic basis for membrane divergence in archaea and bacteria.

Sojo V, Pomiankowski A, Lane N.

PLoS Biol. 2014 Aug 12;12(8):e1001926. doi: 10.1371/journal.pbio.1001926. eCollection 2014 Aug. Erratum in: PLoS Biol. 2015 Mar;13(3):e1002102.

17.

Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members.

Bienstock RJ, Beard WA, Wilson SH.

DNA Repair (Amst). 2014 Oct;22:77-88. doi: 10.1016/j.dnarep.2014.07.003. Epub 2014 Aug 9.

18.

Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork.

Yuan Q, McHenry CS.

Nucleic Acids Res. 2014 Feb;42(3):1747-56. doi: 10.1093/nar/gkt1098. Epub 2013 Nov 13.

19.

Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes.

Timinskas K, Balvočiūtė M, Timinskas A, Venclovas Č.

Nucleic Acids Res. 2014 Feb;42(3):1393-413. doi: 10.1093/nar/gkt900. Epub 2013 Oct 7.

20.

Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples.

Holding AN, Lamers MH, Stephens E, Skehel JM.

J Proteome Res. 2013 Dec 6;12(12):5923-33. doi: 10.1021/pr4003867. Epub 2013 Oct 4.

Supplemental Content

Support Center