Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 48

1.

A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae.

Bergé MJ, Mercy C, Mortier-Barrière I, VanNieuwenhze MS, Brun YV, Grangeasse C, Polard P, Campo N.

Nat Commun. 2017 Nov 20;8(1):1621. doi: 10.1038/s41467-017-01716-9.

2.

DNA Replication in Mycobacterium tuberculosis.

Ditse Z, Lamers MH, Warner DF.

Microbiol Spectr. 2017 Mar;5(2). doi: 10.1128/microbiolspec.TBTB2-0027-2016. Review.

3.

The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum.

Tong J, Meng L, Wang X, Liu L, Lyu L, Wang C, Li Y, Gao Q, Yang C, Niu C.

PLoS One. 2016 May 27;11(5):e0156663. doi: 10.1371/journal.pone.0156663. eCollection 2016.

4.

Spatially distinct and metabolically active membrane domain in mycobacteria.

Hayashi JM, Luo CY, Mayfield JA, Hsu T, Fukuda T, Walfield AL, Giffen SR, Leszyk JD, Baer CE, Bennion OT, Madduri A, Shaffer SA, Aldridge BB, Sassetti CM, Sandler SJ, Kinoshita T, Moody DB, Morita YS.

Proc Natl Acad Sci U S A. 2016 May 10;113(19):5400-5. doi: 10.1073/pnas.1525165113. Epub 2016 Apr 25.

5.

PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence.

Singh P, Rao RN, Reddy JR, Prasad RB, Kotturu SK, Ghosh S, Mukhopadhyay S.

Sci Rep. 2016 Feb 23;6:21624. doi: 10.1038/srep21624.

6.

Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection.

Pettersson BM, Das S, Behra PR, Jordan HR, Ramesh M, Mallick A, Root KM, Cheramie MN, de la Cruz Melara I, Small PL, Dasgupta S, Ennis DG, Kirsebom LA.

PLoS One. 2015 Oct 7;10(10):e0139823. doi: 10.1371/journal.pone.0139823. eCollection 2015.

7.

Mycobacterium tuberculosis oriC sequestration by MtrA response regulator.

Purushotham G, Sarva KB, Blaszczyk E, Rajagopalan M, Madiraju MV.

Mol Microbiol. 2015 Oct;98(3):586-604. doi: 10.1111/mmi.13144. Epub 2015 Aug 31.

8.

Molecular mechanisms for the evolution of bacterial morphologies and growth modes.

Randich AM, Brun YV.

Front Microbiol. 2015 Jun 9;6:580. doi: 10.3389/fmicb.2015.00580. eCollection 2015. Review.

9.

Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface.

Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR.

FEMS Microbiol Rev. 2015 Mar;39(2):184-202. doi: 10.1093/femsre/fuu012. Epub 2015 Jan 23. Review.

10.

Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase.

Guzman JD, Pesnot T, Barrera DA, Davies HM, McMahon E, Evangelopoulos D, Mortazavi PN, Munshi T, Maitra A, Lamming ED, Angell R, Gershater MC, Redmond JM, Needham D, Ward JM, Cuca LE, Hailes HC, Bhakta S.

J Antimicrob Chemother. 2015;70(6):1691-703. doi: 10.1093/jac/dkv010. Epub 2015 Feb 4.

11.

Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers.

Das N, Dai J, Hung I, Rajagopalan MR, Zhou HX, Cross TA.

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E119-26. doi: 10.1073/pnas.1415908112. Epub 2014 Dec 29. Erratum in: Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E816. Rajagopalan, Malini R [corrected to Rajagopalan, Malini R].

12.

A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

Modell JW, Kambara TK, Perchuk BS, Laub MT.

PLoS Biol. 2014 Oct 28;12(10):e1001977. doi: 10.1371/journal.pbio.1001977. eCollection 2014 Oct.

13.

Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

van Dam JC, Schaap PJ, Martins dos Santos VA, Suárez-Diez M.

BMC Syst Biol. 2014 Sep 26;8:111. doi: 10.1186/s12918-014-0111-5.

14.

Mycobacterium tuberculosis MtrB sensor kinase interactions with FtsI and Wag31 proteins reveal a role for MtrB distinct from that regulating MtrA activities.

Plocinska R, Martinez L, Gorla P, Pandeeti E, Sarva K, Blaszczyk E, Dziadek J, Madiraju MV, Rajagopalan M.

J Bacteriol. 2014 Dec;196(23):4120-9. doi: 10.1128/JB.01795-14. Epub 2014 Sep 15.

15.

Cell division in Corynebacterineae.

Donovan C, Bramkamp M.

Front Microbiol. 2014 Apr 10;5:132. doi: 10.3389/fmicb.2014.00132. eCollection 2014. Review. Erratum in: Front Microbiol. 2016 Dec 15;7:1980.

16.

Characterization of the SOS meta-regulon in the human gut microbiome.

Cornish JP, Sanchez-Alberola N, O'Neill PK, O'Keefe R, Gheba J, Erill I.

Bioinformatics. 2014 May 1;30(9):1193-7. doi: 10.1093/bioinformatics/btt753. Epub 2014 Jan 8.

17.

Evaluation of DNA primase DnaG as a potential target for antibiotics.

Kuron A, Korycka-Machala M, Brzostek A, Nowosielski M, Doherty A, Dziadek B, Dziadek J.

Antimicrob Agents Chemother. 2014;58(3):1699-706. doi: 10.1128/AAC.01721-13. Epub 2013 Dec 30.

18.

MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein.

Ramirez MV, Dawson CC, Crew R, England K, Slayden RA.

BMC Microbiol. 2013 Oct 31;13:240. doi: 10.1186/1471-2180-13-240.

19.
20.

Biological consequences and advantages of asymmetric bacterial growth.

Kysela DT, Brown PJ, Huang KC, Brun YV.

Annu Rev Microbiol. 2013;67:417-35. doi: 10.1146/annurev-micro-092412-155622. Epub 2013 Jun 26. Review.

Supplemental Content

Support Center